Python
 Computer >> コンピューター >  >> プログラミング >> Python

Bokehライブラリを使用してPythonを使用して水平バープロットをプロットするにはどうすればよいですか?


Bokehは、データの視覚化に役立つPythonパッケージです。これはオープンソースプロジェクトです。 Bokehは、HTMLとJavaScriptを使用してプロットをレンダリングします。これは、Webベースのダッシュボードでの作業中に役立つことを示しています。

データを視覚化することは、実際に数値を調べたり複雑な計算を実行したりすることなく、データで何が起こっているかを理解するのに役立つため、重要なステップです。

Bokehは、NumPy、Pandas、およびその他のPythonパッケージと組み合わせて簡単に使用できます。インタラクティブなプロットやダッシュボードなどを作成するために使用できます。

定量的な洞察を聴衆に効果的に伝えるのに役立ちます。

BokehはデータソースをJSONファイルに変換します。このファイルは、JavaScriptライブラリであるBokehJSへの入力として使用されます。このBokehJSはTypeScriptで記述されており、最新のブラウザで視覚化をレンダリングするのに役立ちます。

MatplotlibとSeabornは静的プロットを生成しますが、Bokehはインタラクティブプロットを生成します。これは、ユーザーがこれらのプロットを操作すると、それに応じて変化することを意味します。

プロットは、FlaskまたはDjango対応のWebアプリケーションの出力として埋め込むことができます。 Jupyterノートブックを使用してこれらのプロットをレンダリングすることもできます。

ボケの依存関係-

Numpy
Pillow
Jinja2
Packaging
Pyyaml
Six
Tornado
Python−dateutil

WindowsコマンドプロンプトへのBokehのインストール

pip3 install bokeh

AnacondaプロンプトへのBokehのインストール

conda install bokeh

以下は例です-

from bokeh.plotting import figure, output_file, show
fig = figure(plot_width = 400, plot_height = 200)
fig.hbar(y = [2, 5, 9, 1], height = 1, left = 0, right = [1, 6, 3, 9], color = "Cyan")
output_file('bar plot.html')
show(fig)

出力

Bokehライブラリを使用してPythonを使用して水平バープロットをプロットするにはどうすればよいですか?

説明

  • 必要なパッケージがインポートされ、エイリアス化されます。

  • 図関数は、プロットの幅と高さを渡すことによって呼び出されます。

  • 生成されるhtmlファイルの名前を指定するために「output_file」関数が呼び出されます。

  • ボケに存在する「hbar」関数は、データポイントとともに呼び出されます。

  • 「表示」機能は、プロットを表示するために使用されます。


  1. PythonのSeabornライブラリで棒グラフをどのように使用できますか?

    Seabornは、データの視覚化に役立つライブラリです。カスタマイズされたテーマと高レベルのインターフェースが付属しています。 以前のプロットでは、データセット全体をグラフにプロットしました。バープロットの助けを借りて、データの分布の中心傾向を理解することができます。 棒グラフ関数は、カテゴリ変数と連続変数の間の関係を確立します。データは長方形のバーの形式で表され、バーの長さはその特定のカテゴリのデータの割合を示します。 「タイタニック」データセットを使用してバープロットを理解しましょう- 例 import pandas as pd import seaborn as sb from m

  2. Seabornライブラリを使用してPythonで散布図を表示するにはどうすればよいですか?

    データの視覚化は、実際に数値を調べたり複雑な計算を実行したりすることなく、データで何が起こっているのかを理解するのに役立つため、重要なステップです。 Seabornは、データの視覚化に役立つライブラリです。 散布図は、グラフ上に分散/分散されたデータポイントとしてデータの分布を示します。ドットを使用して、データセットの値を表します。データセットは本質的に数値です。横軸と縦軸のすべてのドットの位置は、単一のデータポイントの値を示します。 これらは、2つの変数間の関係を理解するのに役立ちます。 PythonでSeabornライブラリを使用してこれを実現する方法を理解しましょう- 例 impor