Bokehを使用してPythonでステップ折れ線グラフを作成するにはどうすればよいですか?
Bokehは、データの視覚化に役立つPythonパッケージです。これはオープンソースプロジェクトです。 Bokehは、HTMLとJavaScriptを使用してプロットをレンダリングします。これは、Webベースのダッシュボードでの作業中に役立つことを示しています。
Bokehは、NumPy、Pandas、およびその他のPythonパッケージと組み合わせて簡単に使用できます。インタラクティブなプロットやダッシュボードなどを作成するために使用できます。
ボケの依存関係-
Numpy Pillow Jinja2 Packaging Pyyaml Six Tornado Python−dateutil
WindowsコマンドプロンプトへのBokehのインストール
pip3 install bokeh
AnacondaプロンプトへのBokehのインストール
conda install bokeh
グリフ関数に存在する「ステップ」関数は、個別のデータポイントを生成するために使用されます。
例
from bokeh.plotting import figure, output_file, show output_file("stepLine.html") p = figure(plot_width=500, plot_height=300) p.step([2, 5, 3, 6, 7,9], [6,3, 2, 1, 0, 5], line_width=2, mode="center") show(p)
出力
説明
-
必要なパッケージがインポートされ、エイリアス化されます。
-
図関数は、プロットの幅と高さとともに呼び出されます。
-
生成されるhtmlファイルの名前を指定するために「output_file」関数が呼び出されます。
-
ボケに存在する「ステップ」関数は、データとともに呼び出されます。
-
ステップのレンダリングに役立ちます。
-
「表示」機能は、プロットを表示するために使用されます。
-
Seabornでfactorplotを使用してPythonでデータを視覚化するにはどうすればよいですか?
Seabornは、データの視覚化に役立つライブラリです。カスタマイズされたテーマと高レベルのインターフェースが付属しています。 棒グラフ関数は、カテゴリ変数と連続変数の間の関係を確立します。データは長方形のバーの形式で表され、バーの長さはその特定のカテゴリのデータの割合を示します。 ポイントプロットはバープロットに似ていますが、フィルバーを表す代わりに、データポイントの推定値は、他の軸上の特定の高さのポイントで表されます。 カテゴリデータは、ポイントプロットまたはfactorplotと呼ばれる高レベルの関数を使用して、カテゴリ散布図または2つの別々のプロットを使用して視覚化できます。
-
PythonのSeabornライブラリで棒グラフをどのように使用できますか?
Seabornは、データの視覚化に役立つライブラリです。カスタマイズされたテーマと高レベルのインターフェースが付属しています。 以前のプロットでは、データセット全体をグラフにプロットしました。バープロットの助けを借りて、データの分布の中心傾向を理解することができます。 棒グラフ関数は、カテゴリ変数と連続変数の間の関係を確立します。データは長方形のバーの形式で表され、バーの長さはその特定のカテゴリのデータの割合を示します。 「タイタニック」データセットを使用してバープロットを理解しましょう- 例 import pandas as pd import seaborn as sb from m