Python
 Computer >> コンピューター >  >> プログラミング >> Python

Pythonを使用したトレーニング用にIlliadデータセットをどのように準備できますか?


Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズムや深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。

「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-

pip install tensorflow

Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。

イリアスのデータセットを使用します。このデータセットには、ウィリアムカウパー、エドワード(ダービー伯爵)、サミュエルバトラーの3つの翻訳作品のテキストデータが含まれています。モデルは、1行のテキストが与えられたときに翻訳者を識別するようにトレーニングされています。使用されているテキストファイルは前処理されています。これには、ドキュメントのヘッダーとフッター、行番号、章のタイトルの削除が含まれます。

以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 CollaboratoryはJupyterNotebookの上に構築されています。

以下はコードスニペットです-

print("Prepare the dataset for training")
tokenizer = tf_text.UnicodeScriptTokenizer()
print("Defining a function named 'tokenize' to tokenize the text data")
def tokenize(text, unused_label):
   lower_case = tf_text.case_fold_utf8(text)
   return tokenizer.tokenize(lower_case)
tokenized_ds = all_labeled_data.map(tokenize)
print("Iterate over the dataset and print a few samples")
for text_batch in tokenized_ds.take(6):
   print("Tokens: ", text_batch.numpy())

コードクレジット-https://www.tensorflow.org/tutorials/load_data/text

出力

Prepare the dataset for training
Defining a function named 'tokenize' to tokenize the text data
WARNING:tensorflow:From /usr/local/lib/python3.6/distpackages/tensorflow/python/util/dispatch.py:201: batch_gather (from
tensorflow.python.ops.array_ops) is deprecated and will be removed after 2017-10-25.
Instructions for updating:
`tf.batch_gather` is deprecated, please use `tf.gather` with `batch_dims=-1` instead.
Iterate over the dataset and print a few samples
Tokens: [b'but' b'i' b'have' b'now' b'both' b'tasted' b'food' b',' b'and' b'given']
Tokens: [b'all' b'these' b'shall' b'now' b'be' b'thine' b':' b'but' b'if' b'the'
b'gods']
Tokens: [b'their' b'spiry' b'summits' b'waved' b'.' b'there' b',' b'unperceived']
Tokens: [b'"' b'i' b'pray' b'you' b',' b'would' b'you' b'show' b'your' b'love'
b',' b'dear' b'friends' b',']
Tokens: [b'entering' b'beneath' b'the' b'clavicle' b'the' b'point']
Tokens: [b'but' b'grief' b',' b'his' b'father' b'lost' b',' b'awaits' b'him'
b'now' b',']

説明

  • スペースを削除することでデータセット内の文を単語に分割する「トークン化」関数が定義されています。

  • この関数は、データセット全体で呼び出されます。

  • トークン化後のデータセットのサンプルがコンソールに表示されます。


  1. Tensorflowを使用してPythonを使用してデータを視覚化するにはどうすればよいですか?

    花のデータセットがあるとしましょう。花のデータセットは、基本的に花のデータセットにリンクするgoogleAPIを使用してダウンロードできます。 「get_file」メソッドを使用して、APIをパラメーターとして渡すことができます。これが完了すると、データが環境にダウンロードされます。 「matplotlib」ライブラリを使用して視覚化できます。 「imshow」メソッドは、コンソールに画像を表示するために使用されます。 続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか? Keras Sequenti

  2. Tensorflowを使用して、Pythonを使用して花のデータセットを視覚化するにはどうすればよいですか?

    花のデータセットは、「matplotlib」ライブラリを使用して視覚化できます。 「imshow」メソッドは、コンソールに画像を表示するために使用されます。データセット全体が繰り返され、最初の数枚の画像のみが表示されます。 続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか? 数千の花の画像を含む花のデータセットを使用します。これには5つのサブディレクトリが含まれ、クラスごとに1つのサブディレクトリがあります。 以下のコードを実行するためにGoogleColaboratoryを使用しています。 Goo