プログラミング
 Computer >> コンピューター >  >> プログラミング >> プログラミング

最大合計増加部分列


Maximum Sum Increasingサブシーケンスは、指定された整数のリストのサブシーケンスであり、その合計は最大であり、サブシーケンスでは、すべての要素が昇順で並べ替えられます。

L [i]が配列[i]で終わる最大合計増加部分列であるように、最大​​合計増加部分列を格納する配列があるとします。

入力と出力

Input:
Sequence of integers. {3, 2, 6, 4, 5, 1}
Output:
Increasing subsequence whose sum is maximum. {3, 4, 5}.

アルゴリズム

maxSumSubSeq(array, n)

入力: 数列、要素数。

出力: 増加するサブシーケンスの最大合計。

Begin
   define array of arrays named subSeqLen of size n.
   add arr[0] into the subSeqLen
   for i in  range (1 to n-1), do
      for j in range (0 to i-1), do
         if arr[i] > arr[j] and sum of subSeqLen [i] < sum of subSeqLen [j], then
            subSeqLen[i] := subSeqLen[j]
      done
   done

   add arr[i] into subSeqLen[i]
   res := subSeqLen[0]
           
   for all values of subSeqLen, do
      if sum of subSeqLen[i] > sum of subSeqLen[res], then
         res := subSeqLen[i]
   done

   print the values of res.

End

#include <iostream>
#include <vector>
using namespace std;
 
int findAllSum(vector<int> arr) {    //find sum of all vector elements
   int sum = 0;

   for(int i = 0; i<arr.size(); i++) {
      sum += arr[i];
   }

   return sum;
}
 
void maxSumSubSeq(int arr[], int n) {
   vector <vector<int> > subSeqLen(n);    //max sum increasing subsequence ending with arr[i]
   subSeqLen[0].push_back(arr[0]);

   for (int i = 1; i < n; i++) {         //from index 1 to all
      for (int j = 0; j < i; j++) {     //for all j, j<i
           
         if ((arr[i] > arr[j]) && (findAllSum(subSeqLen[i]) < findAllSum(subSeqLen[j])))
            subSeqLen[i] = subSeqLen[j];
      }
       
      subSeqLen[i].push_back(arr[i]);    //sub Sequence ends with arr[i]
   }
 
   vector<int> res = subSeqLen[0];
 
   for(int i = 0; i<subSeqLen.size(); i++) {
      if (findAllSum(subSeqLen[i]) > findAllSum(res))
         res = subSeqLen[i];
   }

   for(int i = 0; i<res.size(); i++)
      cout << res[i] << " ";
   cout << endl;
}

int main() {
   int arr[] = { 3, 2, 6, 4, 5, 1 };
   int n = 6;
   cout << "The Maximum Sum Subsequence is: ";
   maxSumSubSeq(arr, n);
}

出力

The Maximum Sum Subsequence is: 3 4 5

  1. C++で最も長く増加するサブシーケンスの数

    ソートされていない整数の配列が1つあるとします。最長増加部分列の数を見つける必要があるため、入力が[1、3、5、4、7]の場合、増加部分列は[1,3,5,7]であり、出力は2になります。 [1、3、4、7] これを解決するには、次の手順に従います- n:=num配列のサイズ、サイズnの2つの配列lenとcntを作成し、それらに値1を入力します。 lis:=1 1からnの範囲のiの場合 0からi–1の範囲のjの場合 nums [j]の場合、 len [i]の場合、len [i]:=len [j] + 1、およびcnt [i]:=cnt [j] それ以外の場合、len [j] +

  2. C++で厳密に増加するサブアレイの最大合計を見つける

    n個の整数の配列があるとします。厳密に増加するサブ配列の最大合計を求めます。したがって、配列が[1、2、3、2、5、1、7]のような場合、合計は8になります。この配列には、厳密に増加する3つのサブ配列があります。これらは{1、2、3}、{2 、5}および{1、7}。最大合計サブ配列は{1、7}です。 この問題を解決するには、最大合計と現在の合計を追跡する必要があります。各要素arr[i]について、これがarr [i – 1]より大きい場合は、これを現在の合計に加算します。それ以外の場合、arr[i]は別のサブアレイの開始点です。したがって、現在の合計を配列として更新します。現在の合計を更新す