与えられた番号がPythonプログラムでフィボナッチ数であるかどうかを確認するにはどうすればよいですか?
この記事では、以下に示す問題ステートメントの解決策について学習します-
問題の説明
数nが与えられたら、nがフィボナッチ数であるかどうかを確認します
n番目のフィボナッチ数は前の2つのフィボナッチ数の合計であることは誰もが知っています。しかし、それらは漸化式以外の興味深い関係も提供します。
(5 * n2 + 4)または(5 * n2 – 4)が完全な正方形である場合に限り、数値は本質的にフィボナッチです。
このプロパティを使用して、数値がフィボナッチであるかどうかを確認します。
では、Pythonスクリプトの実装を見てみましょう-
例
import math # if x is perfect square def isPerfectSquare(x): s = int(math.sqrt(x)) return s*s == x # if n is a Fibinacci Number def isFibonacci(n): #if one of 5*n*n + 4 or 5*n*n - 4 or both is a perferct square return isPerfectSquare(5*n*n + 4) or isPerfectSquare(5*n*n - 4) for i in range(1,11): if (isFibonacci(i) == True): print (i,"is a Fibonacci Number") else: print (i,"is a not Fibonacci Number")
出力
1 is a Fibonacci Number 2 is a Fibonacci Number 3 is a Fibonacci Number 4 is a not Fibonacci Number 5 is a Fibonacci Number 6 is a not Fibonacci Number 7 is a not Fibonacci Number 8 is a Fibonacci Number 9 is a not Fibonacci Number 10 is a not Fibonacci Number
下の画像に示すように、すべての関数と変数はグローバルフレームで宣言されます-
結論
この記事では、指定された番号がフィボナッチであるかどうかを識別するソリューションを学びました。
-
n番目のフィボナッチ数のPythonプログラム
この記事では、n番目のフィボナッチ数を計算します。 フィボナッチ数 以下に示す漸化式によって定義されます- Fn = Fn-1 + Fn-2 あり F 0 =0およびF1 =1。 まず、フィボナッチ数はほとんどありません 0,1,1,2,3,5,8,13,.................. フィボナッチ数を計算できます 再帰と動的計画法の方法を使用します。 それでは、Pythonスクリプトの形式での実装を見てみましょう アプローチ1:再帰方法 例 #recursive approach def Fibonacci(n): if n<0: &
-
与えられた数がフィボナッチ数であるかどうかをチェックする方法のためのPythonプログラム?
この記事では、以下に示す問題ステートメントの解決策について学習します- 問題の説明 数nが与えられたら、nがフィボナッチ数であるかどうかを確認します n番目のフィボナッチ数は前の2つのフィボナッチ数の合計であることは誰もが知っています。しかし、それらは漸化式以外の興味深い関係も提供します。 (5 * n2 + 4)または(5 * n2 – 4)が完全な正方形である場合に限り、数値は本質的にフィボナッチです。 このプロパティを使用して、数値がフィボナッチであるかどうかを確認します。 では、Pythonスクリプトの実装を見てみましょう- 例 import math # if x is p