Python-DataFrameで欠落している(NaN)値を削除します
欠落している値、つまりNaN値を削除するには、 dropna()を使用します 方法。まず、必要なライブラリをインポートしましょう-
import pandas as pd
CSVを読み取り、DataFrameを作成します-
dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\CarRecords.csv")
dropna()を使用して、欠落している値を削除します。 dropna()が使用された後、欠落している値に対してNaNが表示されます-
dataFrame.dropna()
例
以下は完全なコードです
import pandas as pd # reading csv file dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\CarRecords.csv") print("DataFrame with some NaN (missing) values...\n",dataFrame) # count the rows and columns in a DataFrame print("\nNumber of rows and column in our DataFrame = ",dataFrame.shape) # drop the missing values print("\nDataFrame after removing NaN values...\n",dataFrame.dropna())
出力
これにより、次の出力が生成されます-
DataFrame with some NaN (missing) values... Car Place UnitsSold 0 Audi Bangalore 80.0 1 Porsche Mumbai NaN 2 RollsRoyce Pune 100.0 3 BMW Delhi NaN 4 Mercedes Hyderabad 80.0 5 Lamborghini Chandigarh 80.0 6 Audi Mumbai NaN 7 Mercedes Pune 120.0 8 Lamborghini Delhi 100.0 Number of rows and colums in our DataFrame = (9, 3) DataFrame after removing NaN values ... Car Place UnitsSold 0 Audi Bangalore 80.0 2 RollsRoyce Pune 100.0 4 Mercedes Hyderabad 80.0 5 Lamborghini Chandigarh 80.0 7 Mercedes Pune 120.0 8 Lamborghini Delhi 100.0
-
PythonPandas-補間法を使用してNaN値を入力します
Interpolate()メソッドを使用して、NaN値を入力します。以下が、いくつかのNaN値を使用してMicrosoftExcelで開いたCSVファイルであるとしましょう- CSVファイルからPandasDataFrameにデータをロードする- dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\SalesData.csv") NaN値をinterpolate()-で埋めます dataFrame.interpolate() 例 以下はコードです- import pandas as pd # Load dat
-
Pythonでscikit-learnを使用して画像のピクセル値を表示するにはどうすればよいですか?
データの前処理とは、基本的に、すべてのデータ(さまざまなリソースまたは単一のリソースから収集される)を共通の形式または統一されたデータセット(データの種類に応じて)に収集するタスクを指します。 実際のデータは決して理想的ではないため、データにセルの欠落、エラー、外れ値、列の不一致などが含まれる可能性があります。 場合によっては、画像が正しく配置されていないか、鮮明でないか、サイズが非常に大きいことがあります。前処理の目標は、これらの不一致やエラーを取り除くことです。 画像のピクセルを取得するには、「flatten」という名前の組み込み関数を使用します。画像が読み取られた後、ピクセル値はデ