プログラミング
 Computer >> コンピューター >  >> プログラミング >> プログラミング

最適な二分探索木


整数のセットはソートされた順序で与えられ、別の配列は頻度カウントに頻繁に与えられます。私たちのタスクは、これらのデータを使用してバイナリ検索ツリーを作成し、すべての検索の最小コストを見つけることです。

サブ問題の解を解いて保存するために、補助配列cost [n、n]が作成されます。コストマトリックスは、ボトムアップ方式で問題を解決するためのデータを保持します。

入力と出力

Input:
The key values as node and the frequency.
Keys = {10, 12, 20}
Frequency = {34, 8, 50}
Output:
The minimum cost is 142.
These are possible BST from the given values.
最適な二分探索木 For case 1, the cost is: (34*1) + (8*2) + (50*3) = 200
For case 2, the cost is: (8*1) + (34*2) + (50*2) = 176.
Similarly for case 5, the cost is: (50*1) + (34 * 2) + (8 * 3) = 142 (Minimum)

アルゴリズム

optCostBst(keys, freq, n)

入力: BSTに挿入するキー、各キーの頻度、キーの数。

出力: 最適なBSTを作成するための最小コスト。

Begin
   define cost matrix of size n x n
   for i in range 0 to n-1, do
      cost[i, i] := freq[i]
   done

   for length in range 2 to n, do
      for i in range 0 to (n-length+1), do
         j := i + length – 1
         cost[i, j] := ∞
         for r in range i to j, done
            if r > i, then
               c := cost[i, r-1]
            else
               c := 0
            if r < j, then
               c := c + cost[r+1, j]
            c := c + sum of frequency from i to j
            if c < cost[i, j], then
               cost[i, j] := c
         done
      done
   done
   return cost[0, n-1]
End

#include <iostream>
using namespace std;

int sum(int freq[], int low, int high) {    //sum of frequency from low to high range
   int sum = 0;
   for (int k = low; k <=high; k++)
      sum += freq[k];
   return sum;
}

int minCostBST(int keys[], int freq[], int n) {
   int cost[n][n];

   for (int i = 0; i < n; i++)    //when only one key, move along diagonal elements
      cost[i][i] = freq[i];

   for (int length=2; length<=n; length++) {
      for (int i=0; i<=n-length+1; i++) {    //from 0th row to n-length+1 row as i
         int j = i+length-1;
         cost[i][j] = INT_MAX;    //initially store to infinity

         for (int r=i; r<=j; r++) {
            //find cost when r is root of subtree
            int c = ((r > i)?cost[i][r-1]:0)+((r < j)?cost[r+1][j]:0)+sum(freq, i, j);
            if (c < cost[i][j])
               cost[i][j] = c;
         }
      }
   }
   return cost[0][n-1];
}

int main() {
   int keys[] = {10, 12, 20};
   int freq[] = {34, 8, 50};
   int n = 3;
   cout << "Cost of Optimal BST is: "<< minCostBST(keys, freq, n);
}

出力

Cost of Optimal BST is: 142

  1. データ構造における最適な二分木

    整数のセットはソートされた順序で与えられ、別の配列は頻度カウントに頻繁に与えられます。私たちのタスクは、これらのデータを使用してバイナリ検索ツリーを作成し、すべての検索の最小コストを見つけることです。 サブ問題の解を解いて保存するために、補助配列cost [n、n]が作成されます。コストマトリックスは、ボトムアップ方式で問題を解決するためのデータを保持します。 入力 −ノードおよび頻度としてのキー値。 Keys = {10, 12, 20} Frequency = {34, 8, 50} 出力 −最小コストは142です。 これらは、指定された値から可能なBSTです。 ケース1の

  2. C#での二分探索

    バイナリ検索はソートされた配列で機能します。値は配列の中央の要素と比較されます。同等性が見つからない場合は、値が存在しない半分の部分が削除されます。同様に、残りの半分の部分が検索されます。 これが配列のmid要素です。 62を見つける必要があるとしましょう。そうすると、左側の部分が削除され、右側の部分が検索されます- これらは二分探索の複雑さです- 最悪の場合のパフォーマンス O(log n) ベストケースのパフォーマンス O(1) 平均パフォーマンス O(log n) 最悪の場合のスペースの複雑さ O(1) 例 二分