Nクイーン問題
この問題は、チェス盤でN人の女王の配置を見つけて、女王がボード上の他の女王を攻撃できないようにすることです。
チェスの女王は、水平、垂直、水平、斜めの方法であらゆる方向に攻撃できます。
バイナリマトリックスは、クイーンが他のクイーンを攻撃できないNクイーンの位置を表示するために使用されます。
入力と出力
Input: The size of a chess board. Generally, it is 8. as (8 x 8 is the size of a normal chess board.) Output: The matrix that represents in which row and column the N Queens can be placed. If the solution does not exist, it will return false. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 In this output, the value 1 indicates the correct place for the queens. The 0 denotes the blank spaces on the chess board.
アルゴリズム
isValid(board、row、col)
入力: チェス盤、板の列と列。
出力- クイーンを列に配置し、配置位置が有効かどうかにかかわらず、True。
Begin if there is a queen at the left of current col, then return false if there is a queen at the left upper diagonal, then return false if there is a queen at the left lower diagonal, then return false; return true //otherwise it is valid place End
soleNQueen(board、col)
入力- チェス盤、女王が配置されようとしている列。
出力- クイーンが配置される位置マトリックス。
Begin if all columns are filled, then return true for each row of the board, do if isValid(board, i, col), then set queen at place (i, col) in the board if solveNQueen(board, col+1) = true, then return true otherwise remove queen from place (i, col) from board. done return false End
例
#include<iostream> using namespace std; #define N 8 void printBoard(int board[N][N]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) cout << board[i][j] << " "; cout << endl; } } bool isValid(int board[N][N], int row, int col) { for (int i = 0; i < col; i++) //check whether there is queen in the left or not if (board[row][i]) return false; for (int i=row, j=col; i>=0 && j>=0; i--, j--) if (board[i][j]) //check whether there is queen in the left upper diagonal or not return false; for (int i=row, j=col; j>=0 && i<N; i++, j--) if (board[i][j]) //check whether there is queen in the left lower diagonal or not return false; return true; } bool solveNQueen(int board[N][N], int col) { if (col >= N) //when N queens are placed successfully return true; for (int i = 0; i < N; i++) { //for each row, check placing of queen is possible or not if (isValid(board, i, col) ) { board[i][col] = 1; //if validate, place the queen at place (i, col) if ( solveNQueen(board, col + 1)) //Go for the other columns recursively return true; board[i][col] = 0; //When no place is vacant remove that queen } } return false; //when no possible order is found } bool checkSolution() { int board[N][N]; for(int i = 0; i<N; i++) for(int j = 0; j<N; j++) board[i][j] = 0; //set all elements to 0 if ( solveNQueen(board, 0) == false ) { //starting from 0th column cout << "Solution does not exist"; return false; } printBoard(board); return true; } int main() { checkSolution(); }
出力
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
-
最大の独立集合問題
独立集合は、そのサブセット内の2つのノード間にエッジがない場合、すべての二分木ノードのサブセットです。 ここで、要素のセットから、最長の独立集合を見つけます。つまり、要素を使用してバイナリツリーを形成する場合、すべての最大のサブセットであり、そのサブセット内の要素は相互に接続されていません。 入力と出力 Input: A binary tree. Output: Size of the Largest Independent Set is: 5 アルゴリズム longSetSize(root) このアルゴリズムでは、バイナリツリーが形成され、そのツリーの各ノードがデータとsetSize
-
頂点被覆問題
無向グラフの場合、頂点被覆は頂点のサブセットであり、グラフのすべてのエッジ(u、v)について、uまたはvのいずれかがセットに含まれます。 二分木を使用すると、頂点被覆問題を簡単に解決できます。 この問題は、2つのサブ問題に分けることができます。ルートが頂点被覆の一部である場合。この場合、ルートはすべての子エッジをカバーします。左右のサブツリーの頂点被覆のサイズを簡単に見つけて、ルートに1を追加できます。 入力と出力 Input: A binary tree. Output: The vertex cover is 3. アルゴリズム vertexCover(root node