変数の1つがPythonの離散値である場合、「implot」関数を使用して値をデータに適合させるにはどうすればよいですか?
回帰モデルが構築されているとき、多重共線性がチェックされます。これは、連続変数のすべての異なる組み合わせの間に存在する相関関係を理解する必要があるためです。変数間に多重共線性が存在する場合は、それがデータから削除されていることを確認する必要があります。
ここで、「regpot」と「implot」の機能が機能します。これらは、線形回帰における変数間の線形関係を視覚化するのに役立ちます。
「regplot」関数は、さまざまな形式の変数「x」と「y」の値を受け入れます。これには、numpy配列、pandasシリーズオブジェクト、変数への参照、またはpandasデータフレームからの値が含まれます。
一方、関数「implot」では、ユーザーがデータの特定のパラメーターを渡す必要があり、変数「x」と「y」の値は文字列である必要があります。このタイプのデータ形式は、長形式データと呼ばれます。これが例です-
例
import pandas as pd import seaborn as sb from matplotlib import pyplot as plt my_df = sb.load_dataset('tips') sb.lmplot(x = "size", y = "tip", data = my_df) plt.show()
出力
説明
- 必要なパッケージがインポートされます。
- 入力データは、seabornライブラリから読み込まれる「ヒント」です。
- このデータはデータフレームに保存されます。
- 「load_dataset」関数は、虹彩データをロードするために使用されます。
- このデータは、「implot」機能を使用して視覚化されます。
- ここでは、データフレームがパラメータとして提供されています。
- また、x値とy値が指定されます。
- このデータはコンソールに表示されます。
-
SciPyを使用して、Pythonで行列の固有値と固有ベクトルを計算するにはどうすればよいですか?
固有ベクトルと固有値は、多くの状況で使用されます。ドイツ語で「Eigen」という言葉は、「自分自身」または「典型的」を意味します。固有ベクトルは「特性ベクトル」とも呼ばれます。データセットに対して何らかの変換を実行する必要があるが、データセット内のデータの方向が変更されてはならないという条件が与えられたとします。これは、固有ベクトルと固有値を使用できる場合です。 正方行列(行数が列数に等しい行列)が与えられると、固有値と固有ベクトルは次の方程式を満たします。 固有ベクトルは、固有値を見つけた後に計算されます。 注 −固有値は3次元以上でもうまく機能します。 SciPyは、これらの
-
scikit-learnライブラリを使用してPythonで画像の解像度を取得するにはどうすればよいですか?
データの前処理とは、基本的に、すべてのデータ(さまざまなリソースまたは単一のリソースから収集される)を共通の形式または統一されたデータセット(データの種類に応じて)に収集するタスクを指します。実際のデータは決して理想的ではないため、データにセルの欠落、エラー、外れ値、列の不一致などが含まれる可能性があります。場合によっては、画像が正しく配置されていないか、鮮明でないか、サイズが非常に大きいことがあります。前処理の目標は、これらの不一致やエラーを取り除くことです。 画像の解像度を取得するには、「shape」という名前の組み込み関数を使用します。画像が読み取られた後、ピクセル値は配列の形式で保存