TensorflowとPythonを使用して、前処理されたデータをどのようにシャッフルできますか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズムや深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。フレームワークは、ディープニューラルネットワークの操作をサポートします。
「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-
pip install tensorflow
Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。
イリアスのデータセットを使用します。このデータセットには、ウィリアムカウパー、エドワード(ダービー伯爵)、サミュエルバトラーの3つの翻訳作品のテキストデータが含まれています。モデルは、1行のテキストが与えられたときに翻訳者を識別するようにトレーニングされています。使用されているテキストファイルは前処理されています。これには、ドキュメントのヘッダーとフッター、行番号、章のタイトルの削除が含まれます。
Google Colaboratoryを使用して、以下のコードを実行しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。
例
以下はコードスニペットです-
print("Combine the labelled dataset and reshuffle it") BUFFER_SIZE = 50000 BATCH_SIZE = 64 VALIDATION_SIZE = 5000 all_labeled_data = labeled_data_sets[0] for labeled_dataset in labeled_data_sets[1:]: all_labeled_data = all_labeled_data.concatenate(labeled_dataset) all_labeled_data = all_labeled_data.shuffle( BUFFER_SIZE, reshuffle_each_iteration=False) print("Displaying a few samples of input data") for text, label in all_labeled_data.take(8): print("The sentence is : ", text.numpy()) print("The label is :", label.numpy())
コードクレジット-https://www.tensorflow.org/tutorials/load_data/text
出力
Combine the labelled dataset and reshuffle it Displaying a few samples of input data The sentence is : b'But I have now both tasted food, and given' The label is : 0 The sentence is : b'All these shall now be thine: but if the Gods' The label is : 1 The sentence is : b'Their spiry summits waved. There, unperceived' The label is : 0 The sentence is : b'"I pray you, would you show your love, dear friends,' The label is : 1 The sentence is : b'Entering beneath the clavicle the point' The label is : 0 The sentence is : b'But grief, his father lost, awaits him now,' The label is : 1 The sentence is : b'in the fore-arm where the sinews of the elbow are united, whereon he' The label is : 2 The sentence is : b'For, as I think, I have already chased' The label is : 0
説明
-
データを前処理した後、データセットのいくつかのサンプルがコンソールに表示されます。
-
データはグループ化されていません。つまり、「all_labeled_data」のすべてのエントリが1つのデータポイントにマッピングされます。
-
Tensorflowを使用してPythonを使用してモデルをトレーニングするにはどうすればよいですか?
モデルは、Tensorflowの「train」メソッドを使用してトレーニングできます。この方法では、エポック(モデルに合うようにデータをトレーニングする必要がある回数)とトレーニングデータが指定されます。 続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか? Google Colaboratoryを使用して、以下のコードを実行しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット
-
Tensorflowを使用してPythonを使用してデータを視覚化するにはどうすればよいですか?
花のデータセットがあるとしましょう。花のデータセットは、基本的に花のデータセットにリンクするgoogleAPIを使用してダウンロードできます。 「get_file」メソッドを使用して、APIをパラメーターとして渡すことができます。これが完了すると、データが環境にダウンロードされます。 「matplotlib」ライブラリを使用して視覚化できます。 「imshow」メソッドは、コンソールに画像を表示するために使用されます。 続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか? Keras Sequenti