Python
 Computer >> コンピューター >  >> プログラミング >> Python

TensorFlowを使用したAutoMPGデータセットを使用して、燃費をどのように予測できますか?


Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。

これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。フレームワークは、ディープニューラルネットワークの操作をサポートします。これは非常にスケーラブルであり、多くの一般的なデータセットが付属しています。 GPU計算を使用し、リソースの管理を自動化します。多数の機械学習ライブラリが付属しており、十分にサポートされ、文書化されています。フレームワークには、ディープニューラルネットワークモデルを実行し、それらをトレーニングし、それぞれのデータセットの関連する特性を予測するアプリケーションを作成する機能があります。

「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-

pip install tensorflow

Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは、多次元配列またはリストに他なりません。これらは、3つの主要な属性を使用して識別できます-

回帰問題の背後にある目的は、価格、確率、雨が降るかどうかなど、連続変数または離散変数の出力を予測することです。

私たちが使用するデータセットは「自動MPG」データセットと呼ばれます。 1970年代と1980年代の自動車の燃費が含まれています。これには、重量、馬力、排気量などの属性が含まれます。これにより、特定の車両の燃料効率を予測する必要があります。

以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。

以下はコードスニペットです-

hrspwr = np.array(train_features['Horsepower'])
print("The data is being normalized")
hrspwr_normalizer = preprocessing.Normalization(input_shape=[1,])
hrspwr_normalizer.adapt(hrspwr)

hrspwr_model = tf.keras.Sequential([
   hrspwr_normalizer,
   layers.Dense(units=1)
])
print("The statistical data sample ")
hrspwr_model.summary()
print("The predicted output ")
hrspwr_model.predict(hrspwr[:7])
print("The model is being compiled : ")
hrspwr_model.compile(
   optimizer=tf.optimizers.Adam(learning_rate=0.1),
   loss='mean_absolute_error')

コードクレジット − https://www.tensorflow.org/tutorials/keras/regression

出力

TensorFlowを使用したAutoMPGデータセットを使用して、燃費をどのように予測できますか?

説明

  • 「馬力」からの「MPG」値を予測する必要があります。

  • Kerasモデルは、モデルのアーキテクチャを定義することによってトレーニングされます。

  • ここで定義されているモデルは「シーケンシャル」モデルです。一連のステップを示します。

  • まず、「馬力」入力が正規化されます。

  • 線形変換(y =mx + b)が適用され、高密度レイヤー「layers.Dense」の助けを借りて出力が生成されます。

  • 「馬力」正規化レイヤーが作成されます。


  1. TensorFlowを使用してAutoMPGデータセットを使用してモデルをデータに適合させるにはどうすればよいですか?

    Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。 「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます- pip install tensorflow Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりませ

  2. TensorFlowを使用したAutoMPGデータセットを使用して、データを分割および検査して燃費を予測するにはどうすればよいですか?

    Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。フレームワークは、ディープニューラルネットワークの操作をサポートします。非常にスケーラブルで、多くの一般的なデータセットが付属しています。 Tensorは、TensorFlow