Python
 Computer >> コンピューター >  >> プログラミング >> Python

TensorFlowを使用してAutoMPGデータセットを使用してモデルをデータに適合させるにはどうすればよいですか?


Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。

「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-

pip install tensorflow

Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。

回帰問題の背後にある目的は、価格、確率、雨が降るかどうかなど、連続変数または離散変数の出力を予測することです。

私たちが使用するデータセットは「自動MPG」データセットと呼ばれます。 1970年代と1980年代の自動車の燃費が含まれています。これには、重量、馬力、排気量などの属性が含まれます。これにより、特定の車両の燃料効率を予測する必要があります。

以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 Colaboratoryは、JupyterNotebookの上に構築されています。以下はコードスニペットです-

print("The training data is being fit to the model ")
history = hrspwr_model.fit(
train_features['Horsepower'], train_labels,
epochs=150,
verbose=0,
validation_split = 0.3)

hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
hist.tail()

コードクレジット − https://www.tensorflow.org/tutorials/keras/regression

出力

TensorFlowを使用してAutoMPGデータセットを使用してモデルをデータに適合させるにはどうすればよいですか?

説明

  • 「適合」関数を使用して、データをモデルに適合させます。

  • ステップ数は「エポック」属性を使用して設定されます。

  • 「history」オブジェクトは、入力データに関連付けられた統計の進行状況を保存します。

  • データフレームに変換されます。

  • データのサンプルがコンソールに表示されます。

  • データも視覚化されます。


  1. TensorFlowを使用したAutoMPGデータセットを使用して、データを分割および検査して燃費を予測するにはどうすればよいですか?

    Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。フレームワークは、ディープニューラルネットワークの操作をサポートします。非常にスケーラブルで、多くの一般的なデータセットが付属しています。 Tensorは、TensorFlow

  2. 非線形データをPythonのモデルにどのように適合させることができますか?

    データの視覚化に役立つSeabornライブラリを使用します。回帰モデルを作成するときに、多重共線性がチェックされます。これは、連続変数のすべての異なる組み合わせの間に存在する相関関係を理解する必要があるためです。変数間に多重共線性が存在する場合は、それがデータから削除されていることを確認する必要があります。通常、実世界のデータは非線形です。 このような非線形データをモデルに適合させるメカニズムを見つける必要があります。このデータを視覚化するために、Anscombeのデータセットを使用します。 「implot」関数は、この非線形データで使用されます。 これが例です- 例 import pan