Python
 Computer >> コンピューター >  >> プログラミング >> Python

PythonのTensorflowでシーケンシャルモデルを使用する必要があるのはいつですか?例を挙げる


シーケンシャルモデルは、レイヤーのプレーンスタックがある場合に関連します。このスタックでは、すべてのレイヤーに1つの入力テンソルと1つの出力テンソルがあります。モデルに複数の入力または複数の出力がある場合は適切ではありません。レイヤーを共有する必要がある場合は適切ではありません。レイヤーに複数の入力または複数の出力がある場合は適切ではありません。非線形アーキテクチャが必要な場合は適切ではありません。

Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。

Kerasは、プロジェクトONEIROS(オープンエンドの神経電子インテリジェントロボットオペレーティングシステム)の研究の一環として開発されました。 Kerasは、Pythonで記述されたディープラーニングAPIです。これは、機械学習の問題を解決するのに役立つ生産的なインターフェースを備えた高レベルのAPIです。 Tensorflowフレームワーク上で実行されます。迅速な実験を支援するために構築されました。非常にスケーラブルで、クロスプラットフォーム機能が付属しています。これは、KerasをTPUまたはGPUのクラスターで実行できることを意味します。 Kerasモデルをエクスポートして、Webブラウザや携帯電話で実行することもできます。

KerasはすでにTensorflowパッケージに含まれています。以下のコード行を使用してアクセスできます。

import tensorflow
from tensorflow import keras

Google Colaboratoryを使用して、以下のコードを実行しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。

Keras-

を含むTensorflowを使用してシーケンシャルモデルを定義する例を見てみましょう。

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
print("A sequential model is being defined, that has three layers")
model = keras.Sequential(
   [
      layers.Dense(2, activation="relu", name="layer_1"),
      layers.Dense(3, activation="relu", name="layer_2"),
      layers.Dense(4, name="layer_3"),
   ]
)
print("The model is being called on test data")
x = tf.ones((2, 2))
y = model(x)

コードクレジット-https://www.tensorflow.org/guide/keras/sequential_model

出力

PythonのTensorflowでシーケンシャルモデルを使用する必要があるのはいつですか?例を挙げる

A sequenital model is being defined, that has three layers
The model is being called on test data
The layers are
[<tensorflow.python.keras.layers.core.Dense object at 0x7fe921aaf7b8>, <tensorflow.python.keras.layers.core.Dense object at 0x7fe921a6d898>, <tensorflow.python.keras.layers.core.Dense object at 0x7fe921a6dc18>]

説明

  • 必要なパッケージがインポートされ、エイリアス化されます。

  • シーケンシャルモデルは、Kerasに存在する「シーケンシャル」メソッドを使用して作成されます。

  • このモデルはテストデータで呼び出されます。

  • モデルのレイヤーに関する詳細がコンソールに表示されます。


  1. Kerasを使用してPythonで新しいコールバックを使用してモデルをトレーニングするにはどうすればよいですか?

    Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます- pip install tensorflow Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「デー

  2. Pythonを使用してモデルをプロットするためにKerasをどのように使用できますか?

    Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子イン