Pythonを使用してTensorflowでシーケンシャルモデル(高密度レイヤー)を構築する方法を説明する
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。
「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-
pip install tensorflow
レイヤーAPIはKerasAPIの一部です。ケラスはギリシャ語で「角」を意味します。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子インテリジェントロボットオペレーティングシステム)の研究の一環として開発されました。 Kerasは、Pythonで記述されたディープラーニングAPIです。これは、機械学習の問題を解決するのに役立つ生産的なインターフェースを備えた高レベルのAPIです。 Tensorflowフレームワーク上で実行されます。迅速な実験を支援するために構築されました。機械学習ソリューションの開発とカプセル化に不可欠な、本質的な抽象化とビルディングブロックを提供します。非常にスケーラブルで、クロスプラットフォーム機能が付属しています。これは、KerasをTPUまたはGPUのクラスターで実行できることを意味します。 Kerasモデルをエクスポートして、Webブラウザや携帯電話で実行することもできます。
KerasはすでにTensorflowパッケージに含まれています。以下のコード行を使用してアクセスできます。
import tensorflow from tensorflow import keras
Google Colaboratoryを使用して、以下のコードを実行しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。
以下は、密なレイヤーを作成するためのコードです-
例
print("Three dense layers are being created") layer1 = layers.Dense(2, activation="relu", name="layer_1") layer2 = layers.Dense(3, activation="relu", name="layer_2") layer3 = layers.Dense(4, name="layer_3") print("The model is being called on test data") x = tf.ones((4, 4)) y = layer3(layer2(layer1(x)))
コードクレジット-https://www.tensorflow.org/guide/keras/sequential_model
出力
Three dense layers are being created The model is being called on test data The layers are [<tensorflow.python.keras.layers.core.Dense object at 0x7fe921aaf7b8>, <tensorflow.python.keras.layers.core.Dense object at 0x7fe921a6d898>, <tensorflow.python.keras.layers.core.Dense object at 0x7fe921a6dc18>]
説明
-
これは、Pythonを使用してKerasでシーケンシャルモデルを作成し、それにレイヤーを追加するための代替方法です。
-
すべてのレイヤーは、そのレイヤーで「layers.Dense」メソッドを呼び出すことによって明示的に作成されます。
-
シーケンシャルモデルは、レイヤーのリストをこのコンストラクターに渡すことによって作成されます。
-
「layers」属性を使用して、モデル内のレイヤーに関する詳細を知ることができます。
-
レイヤーが追加されると、データがコンソールに表示されます。
-
TensorFlowを使用してAutoMPGでシーケンシャルモデルを構築するにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。 Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは、多次元配列またはリストに他なりません。これらは、3つの主要な属性を使用して識別できます- ランク −テンソルの次元について説明します。これは、テンソルの順序または定義さ
-
Pythonを使用してモデルをプロットするためにKerasをどのように使用できますか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子イン