Tensorflowを使用して、kerasシーケンシャルAPIを使用して花のデータセットを探索するにはどうすればよいですか?
花のデータセットは、「PIL」パッケージと「Image.open」メソッドを使用してkerasシーケンシャルAPIを使用して探索できます。サブディレクトリが異なれば、花の画像の種類も異なり、インデックスを作成してコンソールに表示できます。
続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか?
Keras Sequential APIを使用します。これは、レイヤーのプレーンスタックでの作業に使用されるシーケンシャルモデルの構築に役立ちます。このモデルでは、すべてのレイヤーに1つの入力テンソルと1つの出力テンソルがあります。画像分類子はケラスを使用して作成されます。シーケンシャルモデルであり、データはpreprocessing.image_dataset_from_directoryを使用してロードされます。
データはディスクから効率的にロードされます。過剰適合が特定され、それを軽減するための手法が適用されます。これらの手法には、データ拡張とドロップアウトが含まれます。 3700本の花の画像があります。このデータセットには5つのサブディレクトリが含まれ、クラスごとに1つのサブディレクトリがあります。それらは、デイジー、タンポポ、バラ、ヒマワリ、チューリップです。
Google Colaboratoryを使用して、以下のコードを実行しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。
image_count = len(list(data_dir.glob('*/*.jpg'))) print("The number of images in the dataset is:") print(image_count) print("A glimpse of the dataset") print("ROSES") roses = list(data_dir.glob('roses/*')) PIL.Image.open(str(roses[1])) print("TULIPS") tulips = list(data_dir.glob('tulips/*')) PIL.Image.open(str(tulips[0]))
コードクレジット:https://www.tensorflow.org/tutorials/images/classification
出力
The number of images in the dataset is: 3670 A glimpse of the dataset ROSES TULIPS
説明
- データのサンプルがコンソールに表示されます。
-
Pythonを使用してモデルをプロットするためにKerasをどのように使用できますか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子イン
-
Keras機能APIを使用してPythonを使用してレイヤーを作成する方法について話し合う
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます- pip install tensorflow ケラスはギリシャ語で「角」を意味します。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子インテリジェントロ