Python –Pandasデータフレームのマルチレベル列インデックスからレベルを削除します
マルチレベルの列インデックスからレベルを削除するには、columns.droplevel()を使用します。 Multiindex.from_tuples()を使用して、列ごとにインデックスを作成しました。
最初に、列ごとにインデックスを作成します-
items = pd.MultiIndex.from_tuples([("Col 1", "Col 1", "Col 1"),("Col 2", "Col 2", "Col 2"),("Col 3", "Col 3", "Col 3")])
次に、マルチインデックス配列を作成し、マルチインデックスデータフレームを形成します
arr = [np.array(['car', 'car', 'car','bike','bike', 'bike', 'truck', 'truck', 'truck']), np.array(['valueA', 'valueB', 'valueC','valueA', 'valueB', 'valueC','valueA', 'valueB', 'valueC'])] # forming multiindex dataframe dataFrame = pd.DataFrame(np.random.randn(9, 3), index=arr,columns=items)
インデックスにラベルを付ける-
dataFrame.index.names = ['level 0', 'level 1']
インデックス0でレベルを落とす-
dataFrame.columns = dataFrame.columns.droplevel(0)
例
以下はコードです
import numpy as np import pandas as pd items = pd.MultiIndex.from_tuples([("Col 1", "Col 1", "Col 1"),("Col 2", "Col 2", "Col 2"),("Col 3", "Col 3", "Col 3")]) # multiindex array arr = [np.array(['car', 'car', 'car','bike','bike', 'bike', 'truck', 'truck', 'truck']), np.array(['valueA', 'valueB', 'valueC','valueA', 'valueB', 'valueC','valueA', 'valueB', 'valueC'])] # forming multiindex dataframe dataFrame = pd.DataFrame(np.random.randn(9, 3), index=arr,columns=items) # labelling index dataFrame.index.names = ['level 0', 'level 1'] print"DataFrame...\n",dataFrame print"\nDropping a level...\n"; dataFrame.columns = dataFrame.columns.droplevel(0) print"Updated DataFrame..\n",dataFrame
出力
これにより、次の出力が生成されます
DataFrame... Col 1 Col 2 Col 3 Col 1 Col 2 Col 3 Col 1 Col 2 Col 3 level 0 level 1 car valueA 1.691127 0.315145 -0.695925 valueB -2.077182 -2.027643 -0.523965 valueC 1.021402 -0.384421 0.640215 bike valueA -2.271217 0.197185 0.304847 valueB 0.119615 -0.520491 -0.746547 valueC 1.856888 -0.491540 -1.754604 truck valueA 0.829854 -0.204102 -1.130511 valueB 0.310692 0.119087 -0.244919 valueC -0.245934 -2.141639 -1.298278 Dropping a level... Updated DataFrame.. Col 1 Col 2 Col 3 Col 1 Col 2 Col 3 level 0 level 1 car valueA 1.691127 0.315145 -0.695925 valueB -2.077182 -2.027643 -0.523965 valueC 1.021402 -0.384421 0.640215 bike valueA -2.271217 0.197185 0.304847 valueB 0.119615 -0.520491 -0.746547 valueC 1.856888 -0.491540 -1.754604 truck valueA 0.829854 -0.204102 -1.130511 valueB 0.310692 0.119087 -0.244919 valueC -0.245934 -2.141639 -1.298278
-
PythonPandas-データフレームからマルチインデックスを作成
DataFrameからマルチインデックスを作成するには、MultiIndexを使用します。 from_frame()メソッド。まず、リストの辞書を作成しましょう- d = {'Car': ['BMW', 'Lexus', 'Audi', 'Mercedes', 'Jaguar', 'Bentley'],'Date_of_purchase': ['2020-10-10', '2020-10-12', '2020-10-17'
-
Python-PandasDataFrameからnull行を削除する方法
Pandas DataFrameのnull行を削除するには、dropna()メソッドを使用します。以下が、いくつかのNaN、つまりnull値を含むCSVファイルであるとしましょう- read_csv()を使用してCSVファイルを読み取ってみましょう。 CSVはデスクトップにあります- dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\CarRecords.csv") dropna()-を使用してnull値を削除します dataFrame = dataFrame.dropna() 例 以下は完全なコードです-