Python
 Computer >> コンピューター >  >> プログラミング >> Python

Pandasデータフレームを共通の列とマージし、一致しない値にNaNを設定します


2つのPandasDataFrameを共通の列とマージするには、 merge()を使用します 機能し、オンを設定します 列名としてのパラメーター。一致しない値にNaNを設定するには、「方法」を使用します 」パラメータを設定し、に設定します または正しい 。つまり、左または右にマージします。

まず、エイリアスを使用してpandasライブラリをインポートしましょう-

import pandas as pd

DataFrame1を作成しましょう-

dataFrame1 = pd.DataFrame(
   {
      "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90]
   }
)

DataFrame2を作成しましょう

dataFrame2 = pd.DataFrame(
   {
      "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000]

   }
)

次に、DataFrameを共通の列Carとマージします。左側の""は、左側のDataFrameのすべての値を表示し、2 nd からの一致しない値にNaNを設定します。 DataFrame-

mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="left")

以下はコードです

import pandas as pd

# Create DataFrame1
dataFrame1 = pd.DataFrame(
   {
      "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90]
   }
)

print("DataFrame1 ...\n",dataFrame1)

# Create DataFrame2
dataFrame2 = pd.DataFrame(
   {
      "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000]

   }
)

print("\nDataFrame2 ...\n",dataFrame2)

# merge DataFrames with common column Car and "left" sets NaN for unmatched values from second DataFrame
mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="left")
print("\nMerged data frame with common column...\n", mergedRes)

出力

以下はコードです-

DataFrame1 ...
       Car   Units
0      BMW     100
1    Lexus     150
2     Audi     110
3  Mustang      80
4  Bentley     110
5   Jaguar      90

DataFrame2 ...
        Car   Reg_Price
0       BMW        7000
1     Lexus        1500
2     Tesla        5000
3   Mustang        8000
4  Mercedes        9000
5    Jaguar        6000

Merged data frame with common column...
       Car   Units   Reg_Price
0      BMW     100      7000.0
1    Lexus     150      1500.0
2     Audi     110         NaN
3  Mustang      80      8000.0
4  Bentley     110         NaN
5   Jaguar      90      6000.0

  1. Matplotlibを使用してPandasデータフレームの折れ線グラフをプロットしますか?

    plot()を使用して、PandasDataFrameのライングラフをプロットします。まず、必要なライブラリをインポートします- import pandas as pd import matplotlib.pyplot as plt データフレームを作成する- dataFrame = pd.DataFrame(    {       "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', &#

  2. PythonPandas-DataFrame内のすべてのNaN要素を0に置き換えます

    NaN値を置き換えるには、fillna()メソッドを使用します。以下が、いくつかのNaN値を使用してMicrosoftExcelで開いたCSVファイルであるとしましょう- まず、必要なライブラリをインポートします- import pandas as pd CSVファイルからPandasDataFrameにデータをロードする- dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\SalesData.csv") fillna()メソッドを使用してNaN値を0に置き換えます- dataFrame.fillna(0)