プログラミング
 Computer >> コンピューター >  >> プログラミング >> プログラミング

データ構造の二分探索木


二分探索木は、いくつかの特性を持つ二分木です。これらのプロパティは次のようなものです-

  • すべての二分探索木は二分木です
  • 左の子はすべて、ルートよりも価値が低くなります
  • すべての正しい子はrootよりも大きな価値を持ちます
  • 理想的な二分探索木は、同じ値を2回保持することはありません。

このようなツリーが1つあるとします-

データ構造の二分探索木

このツリーは1つの二分探索木です。上記のすべてのプロパティに従います。要素をインオーダートラバーサルモードにトラバースすると、5、8、10、15、16、20、23を取得できます。これをC++コードで実装する方法を理解するために1つのコードを見てみましょう。

#include<iostream>
using namespace std;
class node{
   public:
      int h_left, h_right, bf, value;
      node *left, *right;
};
class tree{
   private:
      node *get_node(int key);
   public:
      node *root;
      tree(){
         root = NULL; //set root as NULL at the beginning
      }
      void inorder_traversal(node *r);
      node *insert_node(node *root, int key);
};
node *tree::get_node(int key){
   node *new_node;
   new_node = new node; //create a new node dynamically
   new_node->h_left = 0; new_node->h_right = 0;
   new_node->bf = 0;
   new_node->value = key; //store the value from given key
   new_node->left = NULL; new_node->right = NULL;
   return new_node;
}
void tree::inorder_traversal(node *r){
   if(r != NULL){ //When root is present, visit left - root - right
      inorder_traversal(r->left);
      cout << r->value << " ";
      inorder_traversal(r->right);
   }
}
node *tree::insert_node(node *root, int key){
   if(root == NULL){
      return (get_node(key)); //when tree is empty, create a node as root
   }
   if(key < root->value){ //when key is smaller than root value, go to the left
      root->left = insert_node(root->left, key);
   }else if(key > root->value){ //when key is greater than root value, go to the right
      root->right = insert_node(root->right, key);
   }
   return root; //when key is already present, do not insert it again
}
main(){
   node *root;
   tree my_tree;
   //Insert some keys into the tree.
   my_tree.root = my_tree.insert_node(my_tree.root, 10);
   my_tree.root = my_tree.insert_node(my_tree.root, 5);
   my_tree.root = my_tree.insert_node(my_tree.root, 16);
   my_tree.root = my_tree.insert_node(my_tree.root, 20);
   my_tree.root = my_tree.insert_node(my_tree.root, 15);
   my_tree.root = my_tree.insert_node(my_tree.root, 8);
   my_tree.root = my_tree.insert_node(my_tree.root, 23);
   cout << "In-Order Traversal: ";
   my_tree.inorder_traversal(my_tree.root);
}

出力

In-Order Traversal: 5 8 10 15 16 20 23

  1. データ構造における二分木表現

    ここでは、コンピュータのメモリでバイナリツリーを表現する方法を説明します。表現するには2つの異なる方法があります。これらは配列とリンクリストを使用しています。 このようなツリーが1つあるとします- 配列表現は、レベル順の方法を使用して要素をスキャンすることにより、ツリーデータを格納します。したがって、ノードをレベルごとに格納します。一部の要素が欠落している場合は、空白のままにします。上記のツリーの表現は以下のようになります- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 10 5

  2. C#での二分探索

    バイナリ検索はソートされた配列で機能します。値は配列の中央の要素と比較されます。同等性が見つからない場合は、値が存在しない半分の部分が削除されます。同様に、残りの半分の部分が検索されます。 これが配列のmid要素です。 62を見つける必要があるとしましょう。そうすると、左側の部分が削除され、右側の部分が検索されます- これらは二分探索の複雑さです- 最悪の場合のパフォーマンス O(log n) ベストケースのパフォーマンス O(1) 平均パフォーマンス O(log n) 最悪の場合のスペースの複雑さ O(1) 例 二分