プログラミング
 Computer >> コンピューター >  >> プログラミング >> プログラミング

データマイニングとは何ですか?


データマイニングは、統計的および数学的手法を含むパターン認識技術を使用して、リポジトリに保存された大量のデータを転送することにより、有用な新しい相関関係、パターン、および傾向を見つけるプロセスです。事実に基づくデータセットを分析して、疑わしい関係を発見し、論理的でデータ所有者に役立つ新しい方法でレコードを要約します。

これは、データベースの所有者にとって明確で有益な結果を得るために、最初は未知である規則性または関係を見つけるための大量の情報の選択、調査、およびモデリングの手順です。

データマイニングはデータサイエンスに似ています。それは、特定の状況で、特定のデータセットに対して、目的を持って人によって実行されます。このフェーズには、テキストマイニング、Webマイニング、オーディオおよびビデオマイニング、画像データマイニング、ソーシャルメディアマイニングなど、いくつかのタイプのサービスが含まれます。シンプルまたは非常に具体的なソフトウェアを介して完成します。

データマイニングをアウトソーシングすることで、すべての作業をより迅速に、低い運用コストで実行できます。特定の企業は、新しいテクノロジーを使用して、手動で見つけることが不可能なデータを保存することもできます。複数のプラットフォームで利用できるデータは大量にありますが、アクセスできる知識は非常に限られています。

主な課題は、データを分析して、問題の解決や企業開発に使用できる重要なデータを抽出することです。データをマイニングし、そこからより良い判断を発見するために利用できる多くの動的な手段と手法があります。

データマイニングは、データベース内のナレッジディスカバリー(KDD)とも呼ばれます。 。プロセスとしての知識発見には、次の一連の反復ステップが含まれます-

  • データクリーニング −ノイズや一貫性のない情報を排除できます。

  • データ統合 −複数のデータソースを接続できるデータ統合。

  • データの選択 −データ選択では、分析機能に関連するデータがデータベースからフェッチされます。

  • データ変換 −データ変換では、データは、要約または集計操作を実行することにより、マイニングに適用可能な形式に変換またはリンクされます。

  • データマイニング −データパターンを抽出するためにインテリジェントな方法が使用される重要なフェーズです。

  • パターン評価 −いくつかの興味深い尺度に基づいて、知識を定義する本当に興味深いパターンを認識できます。

  • 知識のプレゼンテーション −知識のプレゼンテーションでは、視覚化と知識表現の方法を使用して、マイニングされた知識を顧客に提示します。


  1. 時間的データマイニングとは何ですか?

    時間的データマイニングは、時間的データの大規模なセットから、重要で、暗黙的で、潜在的に不可欠なデータを抽出するプロセスを定義します。時間データは一連の主要なデータタイプであり、通常は数値であり、時間データから有益な知識を収集することを扱います。 時間的データマイニングの目的は、時間的シーケンスと呼ばれるアルファベットからの名目上のシンボルのシーケンスと連続的な実数のシーケンスで構成される、より高いシーケンシャルデータの時間的パターン、予期しない傾向、またはいくつかの隠れた関係を見つけることです。機械学習、統計、データベーステクノロジーからの一連のアプローチを利用することにより、時系列と呼ばれ

  2. 時空間データマイニングとは何ですか?

    時空間データマイニングは、時空間データからパターンと知識を見つけるプロセスを定義します。時空間データマイニングの例には、都市や土地の開発履歴の検索、気象設計の発見、地震やハリケーンの予測、地球温暖化の傾向の決定が含まれます。 携帯電話、GPSデバイス、インターネットベースの地図サービス、気象サービス、デジタルアース、衛星、RFID、センサー、ワイヤレス、ビデオテクノロジーの認知度を考えると、時空間データマイニングは重要になり、広範囲にわたる影響があります。 時空間データにはいくつかの種類があり、移動物体データが重要です。たとえば、動物科学者は野生生物の遠隔測定装置を接続して生態学的行動を調