二分木の2次走査を実装するC++プログラム
これは、バイナリツリーの2次走査を実装するためのC++プログラムです。
Double Order Traversalでは、サブツリーのルートが2回トラバースされます。
アルゴリズム
Begin class BST has following functions: insert() = to insert items in the tree: Enter the root. Enter the value of the node, if it is greater than root then entered as right otherwise left. doubleOrder() = To perform inorder: If root = null Print tree is empty Otherwise perform: Visit root of (sub)tree. Visit left sub-tree. Revisit root of (sub)tree. Visit right sub-tree. End
サンプルコード
# include <iostream> # include <cstdlib> using namespace std; struct nod//node declaration { int info; struct nod *l; struct nod *r; }*r; class BST { public://declaration of functions void insert(nod *, nod *); void doubleOrder(nod *); void show(nod *, int); BST() { r = NULL; } }; void BST::insert(nod *tree, nod *newnode) { if (r == NULL) { r = new nod; r->info = newnode->info; r->l = NULL; r->r = NULL; cout<<"Root Node is Added"<<endl; return; } if (tree->info == newnode->info) { cout<<"Element already in the tree"<<endl; return; } if (tree->info >newnode->info) { if (tree->l != NULL) { insert(tree->l, newnode); } else { tree->l= newnode; (tree->l)->l = NULL; (tree->l)->r= NULL; cout<<"Node Added To Left"<<endl; return; } } else { if (tree->r != NULL) { insert(tree->r, newnode); } else { tree->r = newnode; (tree->r)->l= NULL; (tree->r)->r = NULL; cout<<"Node Added To Right"<<endl; return; } } } void BST::doubleOrder(nod *ptr) { if (r == NULL) { cout << "Tree is empty" << endl; return; } if (ptr != NULL) { cout << ptr->info << " "; doubleOrder(ptr->l); cout << ptr->info << " "; doubleOrder(ptr->r); } } void BST::show(nod *ptr, int level)// print the tree { int i; if (ptr != NULL) { show(ptr->r, level + 1); cout << endl; if (ptr == r) cout << "Root->: "; else { for (i = 0; i < level; i++) cout << " "; } cout << ptr->info; show(ptr->l, level + 1); } } int main() { int c, n; BST bst; nod *t; while (1)//perform switch operation { cout << "1.Insert Element " << endl; cout << "2.Double-Order Traversal" << endl; cout << "3.Show" << endl; cout << "4.Quit" << endl; cout << "Enter your choice : "; cin >>c; switch (c)//perform switch operation { case 1: t = new nod; cout << "Enter the number to be inserted : "; cin >>t->info; bst.insert(r, t); break; case 2: cout << "Double-Order Traversal of BST:" << endl; bst.doubleOrder(r); cout << endl; break; case 3: cout << "Print BST:" << endl; bst.show(r, 1); cout << endl; break; case 4: exit(1); default: cout << "Wrong choice" << endl; } } }
出力
1.Insert Element 2.Double-Order Traversal 3.Show 4.Quit Enter your choice : 1 Enter the number to be inserted : 7 Root Node is Added 1.Insert Element 2.Double-Order Traversal 3.Show 4.Quit Enter your choice : 1 Enter the number to be inserted : 6 Node Added To Left 1.Insert Element 2.Double-Order Traversal 3.Show 4.Quit Enter your choice : 1 Enter the number to be inserted : 4 Node Added To Left 1.Insert Element 2.Double-Order Traversal 3.Show 4.Quit Enter your choice : 1 Enter the number to be inserted : 2 Node Added To Left 1.Insert Element 2.Double-Order Traversal 3.Show 4.Quit Enter your choice : 1 Enter the number to be inserted : 10 Node Added To Right 1.Insert Element 2.Double-Order Traversal 3.Show 4.Quit Enter your choice : 3 Print BST: 10 Root->: 7 6 4 2 1.Insert Element 2.Double-Order Traversal 3.Show 4.Quit Enter your choice : 2 Double-Order Traversal of BST: 7 6 4 2 2 4 6 7 10 10 1.Insert Element 2.Double-Order Traversal 3.Show 4.Quit Enter your choice : 4
-
C++での二分木レベルの順序トラバーサル
二分木があるとします。レベル順トラバーサルスキームを使用して、このツリーをトラバースする必要があります。したがって、ツリーが次のような場合 トラバーサルシーケンスは次のようになります-[10、5、16、8、15、20、23] これを解決するには、次の手順に従います- ノードを格納するためのキューキューを定義する ルートをキューに挿入します。 queが空でない間は、 item:=キューの最前列にあるアイテム アイテムの価値を印刷する アイテムの左側がnullでない場合は、アイテムの左側をqueに挿入します アイテムの権利がnullでない場合は、アイテムの権利をqueに挿入します
-
AVLツリーを実装するためのC++プログラム
AVLツリーは自己平衡二分探索木であり、左右のサブツリーの高さの差がすべてのノードで複数になることはありません。 ツリーの回転は、AVLツリーの要素の順序を妨げることなく構造を変更する操作です。ツリー内で1つのノードを上に移動し、1つのノードを下に移動します。これは、ツリーの形状を変更したり、小さいサブツリーを下に移動したり、大きいサブツリーを上に移動したりして高さを低くしたりするために使用され、多くのツリー操作のパフォーマンスが向上します。回転の方向は、木のノードが移動する側に依存しますが、他の人は、どの子がルートの場所をとるかに依存すると言います。これは、AVLツリーを実装するためのC+