C++で指定された長方形の正確なkカットで取得できる可能な最小領域の最大値
このチュートリアルでは、与えられた長方形の正確なkカットで取得できる可能な最小領域の最大値を見つけるプログラムについて説明します。
このために、長方形の辺と作成できるカットの数が提供されます。私たちの仕事は、与えられた数のカットを行うことによって達成できる最小の面積を計算することです。
例
#include <bits/stdc++.h> using namespace std; void max_area(int n, int m, int k) { if (k > (n + m - 2)) cout << "Not possible" << endl; else { int result; if (k < max(m, n) - 1) { result = max(m * (n / (k + 1)), n * (m / (k + 1))); } else { result = max(m / (k - n + 2), n / (k - m + 2)); } cout << result << endl; } } int main() { int n = 3, m = 4, k = 1; max_area(n, m, k); return 0; }
出力
6
-
C++でN*Nチェス盤に配置できる最大のビショップ
チェス盤のサイズを示す入力Nが与えられます。ここでのタスクは、Nの任意の値について、2人のビショップが互いに攻撃できないようにNXNチェス盤に配置できるビショップの数を見つけることです。例を挙げて理解しましょう。 入力 − n =2 出力 − N * Nチェス盤に配置できる最大のビショップ− 2(上記のように) 説明 −上に示したように、矛盾しない位置は司教が配置されている場所だけです。せいぜい2X2チェス盤のビショップ。 入力 − n =5 出力 − N * Nチェス盤に配置できる最大ビショップ:8(上記のように) 以下のプログラムで使用されているアプローチは次のとおりで
-
C++で指定されたn個の順序付けられた頂点を持つポリゴンの領域
このプログラムでは、ポリゴンの領域を見つける必要があります。このポリゴンの頂点の座標が表示されます。先に進む前に、次の概念をよりよく理解するために、古い概念をブラッシュアップしましょう。 エリア は、任意の2次元図形の範囲を定量的に表したものです。 ポリゴン は、指定された数の辺を持つ閉じた図です。 コーディネート 頂点の数は、2次元平面内の点の値です。例:(0,0)。 それでは、面積を見つけるための数式を見てみましょう。 式 Area = ½ [(x1y2 + x2y3 + …… + x(n-1)yn + xny1) - (x2y1 + x3