C ++
 Computer >> コンピューター >  >> プログラミング >> C ++

ランプによって明るくなったすべてのセルの合計を見つけるC++プログラム


H行とW列のグリッドがあるとします。各正方形が整頓されているか整頓されていない場所。このグリッド内の0個以上の整頓された正方形にランプを配置できます。ランプは、セルを4つの方向(上、下、左、右)のそれぞれで、グリッドの端または乱雑な正方形に初めて到達する直前まで照らすことができます(乱雑なセルは点灯しません)。 )。ランプはまた、それが置かれているセルを明るくします。グリッド内でG[i、j]が'。'の場合そのセルは整頓されており、「#」の場合は整頓されていません。 Kを整頓された正方形の数とします。ランプを配置する方法は全部で2^Kあります。これらの2^Kの方法のそれぞれについて、1つまたは複数のランプによって照らされたセルの数が計算されると仮定します。 10 ^ 9+7を法とするこれらの数値の合計を見つける必要があります。

したがって、入力が次のような場合

その場合、出力は52

になります。

ステップ

これを解決するには、次の手順に従います-

m := 10^9 + 7
N = 2003
Define 2D arrays u, l, r, d of order N x N, and another list p with N^2 elements.
h := row count of matrix
w := column count of matrix
tidy := 0
p[0] := 1
for initialize i := 1, when i <= h * w, update (increase i by 1), do:
   p[i] := p[i - 1] * 2 mod m
for initialize i := 0, when i < h, update (increase i by 1), do:
   for initialize j := 0, when j < w, update (increase j by 1), do:
      u[i, j] := i
      l[i, j] := j
      if i is non-zero, then:
         u[i, j] := u[i - 1, j]
      if j is non-zero, then:
         l[i, j] := l[i, j - 1]
      if matrix[i, j] is same as '#', then:
         u[i, j] := i + 1
         l[i, j] := j + 1
      Otherwise
         (increase tidy by 1)
for initialize i := h - 1, when i >= 0, update (decrease i by 1), do:
   for initialize j := w - 1, when j >= 0, update (decrease j by 1), do:
      d[i, j] := i
      r[i, j] := j
      if i < h - 1, then:
         d[i, j] := d[i + 1, j]
      if j < w - 1, then:
         r[i, j] := r[i, j + 1]
      if matrix[i, j] is same as '#', then:
         d[i, j] := i - 1
         r[i, j] := j - 1
cnt := 0
for initialize i := 0, when i < h, update (increase i by 1), do:
   for initialize j := 0, when j < w, update (increase j by 1), do:
      if matrix[i, j] is same as '#', then:
         Ignore following part, skip to the next iteration
      src := d[i, j] + r[i, j] - u[i, j] - l[i, j] + 1
      cnt := (cnt + (p[src] - 1) * p[tidy - src]) mod m
return cnt

理解を深めるために、次の実装を見てみましょう-

#include <bits/stdc++.h>
using namespace std;
const int m = 1e9 + 7, N = 2003;
int u[N][N], l[N][N], r[N][N], d[N][N], p[N * N];

int solve(vector<vector<char>> matrix){
   int h = matrix.size();
   int w = matrix[0].size();
   int tidy = 0;
   p[0] = 1;
   for (int i = 1; i <= h * w; ++i)
      p[i] = p[i - 1] * 2 % m;
   for (int i = 0; i < h; ++i){
      for (int j = 0; j < w; ++j){
         u[i][j] = i;
         l[i][j] = j;
         if (i)
            u[i][j] = u[i - 1][j];
         if (j)
            l[i][j] = l[i][j - 1];
         if (matrix[i][j] == '#'){
            u[i][j] = i + 1;
            l[i][j] = j + 1;
         }
         else
            ++tidy;
      }
   }
   for (int i = h - 1; i >= 0; --i){
      for (int j = w - 1; j >= 0; --j){
         d[i][j] = i;
         r[i][j] = j;
         if (i < h - 1)
            d[i][j] = d[i + 1][j];
         if (j < w - 1)
            r[i][j] = r[i][j + 1];
         if (matrix[i][j] == '#'){
            d[i][j] = i - 1;
            r[i][j] = j - 1;
         }
      }
   }
   int cnt = 0;
   for (int i = 0; i < h; ++i){
      for (int j = 0; j < w; ++j){
         if (matrix[i][j] == '#')
            continue;
         int src = d[i][j] + r[i][j] - u[i][j] - l[i][j] + 1;
         cnt = (cnt + (p[src] - 1) * p[tidy - src]) % m;
      }
   }
   return cnt;
}
int main(){
   vector<vector<char>> matrix = { { '.', '.', '#' }, { '#', '.', '.' } };
   cout << solve(matrix) << endl;
}

入力

3, 2, { 1, 5, 9 }, { 2, 4, 2 }

出力

52

  1. C++で平行四辺形の面積を見つけるプログラム

    この問題では、平行四辺形の底と高さを表す2つの値が与えられます。私たちのタスクは、C++で平行四辺形の領域を見つけるプログラムを作成することです。 平行四辺形 は、反対側が等しく平行な4辺の閉じた図形です。 問題を理解するために例を見てみましょう 入力 B = 20, H = 15 出力 300 説明 平行四辺形の面積=B* H =20 * 15 =300 ソリューションアプローチ この問題を解決するために、平行四辺形の面積の幾何学的公式を使用します。 Area = base * height. ソリューションの動作を説明するプログラム 例 #include <io

  2. C++で与えられた完全な二分木のすべてのノードの合計を見つけます

    完全な二分木のレベル数を表す正の整数Lがあるとします。この完全な二分木のリーフノードには、1からnまでの番号が付けられています。ここで、nはリーフノードの数です。親ノードは子の合計です。私たちの仕事は、この完璧な二分木のすべてのノードの合計を出力するプログラムを書くことです。したがって、ツリーが以下のようになっている場合- したがって、合計は30です。 よく見ると、すべてのノードの合計を見つける必要があります。リーフノードは1からnまでの値を保持しているため、式n(n + 1)/2を使用してリーフノードの合計を取得できます。これは完全な二分木であるため、各レベルの合計は同じになります