Kerasを使用して、モデルの入力形状が事前に指定されているモデルを作成するにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。
Kerasは、プロジェクトONEIROS(オープンエンドの神経電子インテリジェントロボットオペレーティングシステム)の研究の一環として開発されました。 Kerasは、Pythonで記述されたディープラーニングAPIです。これは、機械学習の問題を解決するのに役立つ生産的なインターフェースを備えた高レベルのAPIです。
Tensorflowフレームワーク上で実行されます。迅速な実験を支援するために構築されました。機械学習ソリューションの開発とカプセル化に不可欠な、本質的な抽象化とビルディングブロックを提供します。
非常にスケーラブルで、クロスプラットフォーム機能が付属しています。これは、KerasをTPUまたはGPUのクラスターで実行できることを意味します。 Kerasモデルをエクスポートして、Webブラウザや携帯電話で実行することもできます。
KerasはすでにTensorflowパッケージに含まれています。以下のコード行を使用してアクセスできます。
import tensorflow from tensorflow import keras
以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 Colaboratoryは、JupyterNotebookの上に構築されています。以下はコードスニペットです-
例
print("Three dense layers are being created") layer = layers.Dense(3) print("The weights associated with the layers are") print(layer.weights) print("The created layers is called on test data") x = tf.ones((2, 3)) y = layer(x) print("Now, the weights are : ") print(layer.weights)
コードクレジット-https://www.tensorflow.org/guide/keras/sequential_model
出力
Three dense layers are being created The weights associated with the layers are [] The created layers is called on test data Now, the weights are : [<tf.Variable 'dense_11/kernel:0' shape=(3, 3) dtype=float32, numpy= array([[-0.9901273 , -0.70897937, -0.44804883], [ 0.6849613 , 0.5198808 , 0.48534775], [-0.07876515, -0.73648643, 0.44018626]], dtype=float32)>, <tf.Variable 'dense_11/bias:0' shape=(3,) dtype=float32, numpy=array([0., 0., 0.], dtype=float32)>]
説明
-
Kerasモデルのすべてのレイヤーは、最適な重みを作成できるように、入力の形状を知る必要があります。
-
最初に、レイヤーが作成されるとき、それに関連付けられた重みはありません。
-
したがって、入力時に初めて呼び出されたときに重みが作成されます。
-
これは、重みが入力の形状に依存するためです。
-
レイヤーは順番に作成されます。
-
これはテストデータで呼び出されます。
-
この新しいモデルに関連付けられた重みがコンソールに表示されます。
-
Kerasを使用してモデルをグラフとしてプロットし、Pythonを使用して入力および出力の形状を表示するにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズムや深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子イン
-
Keras機能APIを使用してPythonを使用してレイヤーを作成する方法について話し合う
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます- pip install tensorflow ケラスはギリシャ語で「角」を意味します。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子インテリジェントロ