Pythonを使用してレイヤーのグラフでノードを抽出して再利用するには、Kerasをどのように使用できますか?
Kerasは、プロジェクトONEIROS(オープンエンドの神経電子インテリジェントロボットオペレーティングシステム)の研究の一環として開発されました。 Kerasは、Pythonで記述されたディープラーニングAPIです。これは、機械学習の問題を解決するのに役立つ生産的なインターフェースを備えた高レベルのAPIです。 Tensorflowフレームワーク上で実行されます。迅速な実験を支援するために構築されました。機械学習ソリューションの開発とカプセル化に不可欠な、本質的な抽象化とビルディングブロックを提供します。
非常にスケーラブルで、クロスプラットフォーム機能が付属しています。これは、KerasをTPUまたはGPUのクラスターで実行できることを意味します。 Kerasモデルをエクスポートして、Webブラウザや携帯電話で実行することもできます。
KerasはすでにTensorflowパッケージに含まれています。以下のコード行を使用してアクセスできます。
import tensorflow from tensorflow import keras
Keras機能APIは、シーケンシャルAPIを使用して作成されたモデルと比較してより柔軟なモデルを作成するのに役立ちます。機能APIは、非線形トポロジを持つモデルで動作し、レイヤーを共有し、複数の入力と出力で動作します。深層学習モデルは通常、複数のレイヤーを含む有向非巡回グラフ(DAG)です。機能APIは、レイヤーのグラフを作成するのに役立ちます。
以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 Colaboratoryは、JupyterNotebookの上に構築されています。以下は、Keraを使用してレイヤーのグラフ内のノードを抽出して再利用するコードスニペットです-
例
print("VGG19 model with pre-trained weights") vgg19 = tf.keras.applications.VGG19() features_list = [layer.output for layer in vgg19.layers] feat_extraction_model = keras.Model(inputs=vgg19.input, outputs=features_list) img = np.random.random((1, 224, 224, 3)).astype("float32") print("Create feature-extraction model") extracted_features = feat_extraction_model(img)
コードクレジット-https://www.tensorflow.org/guide/keras/functional
出力
VGG19 model with pre-trained weights Downloading data from https://storage.googleapis.com/tensorflow/kerasapplications/vgg19/vgg19_weights_tf_dim_ordering_tf_kernels.h5 574717952/574710816 [==============================] - 6s 0us/step Create feature-extraction model
説明
-
レイヤーのグラフは静的なデータ構造であるため、アクセスできます。
-
これが、機能モデルを画像としてプロットできる理由です。
-
中間層(ノード)のアクティベーションにもアクセスして再利用できます。
-
これは、特徴抽出の目的で非常に役立ちます。
-
ImageNetを使用してウェイトが事前にトレーニングされたVGG19モデルを使用します。
-
これらの中間アクティベーションは、グラフのデータ構造をクエリすることで取得できます。
-
これらの機能を使用して、中間層のアクティブ化の値を返す新しい特徴抽出モデルを作成できます。
-
Pythonを使用してモデルをプロットするためにKerasをどのように使用できますか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子イン
-
Kerasを使用してモデルをグラフとしてプロットし、Pythonを使用して入力および出力の形状を表示するにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズムや深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子イン