Python
 Computer >> コンピューター >  >> プログラミング >> Python

Pythonを使用して事前にトレーニングされたモデルでKerasをどのように使用できますか?


Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズムや深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。

ケラスはギリシャ語で「角」を意味します。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子インテリジェントロボットオペレーティングシステム)の研究の一環として開発されました。 Kerasは、Pythonで記述されたディープラーニングAPIです。これは、機械学習の問題を解決するのに役立つ生産的なインターフェースを備えた高レベルのAPIです。

Tensorflowフレームワーク上で実行されます。迅速な実験を支援するために構築されました。機械学習ソリューションの開発とカプセル化に不可欠な、本質的な抽象化とビルディングブロックを提供します。

非常にスケーラブルで、クロスプラットフォーム機能が付属しています。これは、KerasをTPUまたはGPUのクラスターで実行できることを意味します。 Kerasモデルをエクスポートして、Webブラウザや携帯電話で実行することもできます。

KerasはすでにTensorflowパッケージに含まれています。以下のコード行を使用してアクセスできます。

import tensorflow
from tensorflow import keras

Google Colaboratoryを使用して、以下のコードを実行しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 Colaboratoryは、JupyterNotebookの上に構築されています。以下はコードスニペットです-

print("A convolutional model with pre-trained weights is loaded")
base_model = keras.applications.Xception(
   weights='imagenet',
   include_top=False,
   pooling='avg')
print("This model is freezed")
base_model.trainable = False
print("A sequential model is used to add a trainable classifier on top of the base")
model = keras.Sequential([
   base_model,
   layers.Dense(1000),
])
print("Compile the model")
print("Fit the model to the test data")
model.compile(...)
model.fit(...)

コードクレジット-https://www.tensorflow.org/guide/keras/sequential_model

出力

A convolutional model with pre-trained weights is loaded
Downloading data from https://storage.googleapis.com/tensorflow/kerasapplications/xception/xception_weights_tf_dim_ordering_tf_kernels_notop.h583689472/83683744 [==============================] - 1s 0us/step
This model is freezed
A sequential model is used to add a trainable classifier on top of the base
Compile the model
Fit the model to the test data

説明

  • 事前にトレーニングされたモデルを使用して、分類レイヤーを初期化するとともに、シーケンシャルモデルスタックを使用できます。

  • このモデルが構築されると、コンパイルされます。

  • コンパイルが完了すると、このモデルをトレーニングデータに適合させることができます。


  1. Pythonプログラムを使用してモデルをプロットするためにKerasをどのように使用できますか?

    ケラスはギリシャ語で「角」を意味します。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子インテリジェントロボットオペレーティングシステム)の研究の一環として開発されました。 Kerasは、Pythonで記述されたディープラーニングAPIです。これは、機械学習の問題を解決するのに役立つ生産的なインターフェースを備えた高レベルのAPIです。 Tensorflowフレームワーク上で実行されます。迅速な実験を支援するために構築されました。機械学習ソリューションの開発とカプセル化に不可欠な、本質的な抽象化とビルディングブロックを提供します。 非常にスケーラブルで、クロスプラットフ

  2. Pythonを使用してモデルをプロットするためにKerasをどのように使用できますか?

    Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子イン