TensorFlowを使用して、損失関数、オプティマイザーを定義し、モデルをトレーニングして、PythonのIMDBデータセットで評価するにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。
「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-
pip install tensorflow
「IMDB」データセットには、5万本を超える映画のレビューが含まれています。このデータセットは通常、自然言語処理に関連する操作で使用されます。
以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。
以下は、損失関数、オプティマイザーを定義し、モデルをトレーニングして、IMDBデータセットで評価するためのコードスニペットです-
model.compile(loss=losses.BinaryCrossentropy(from_logits=True), optimizer='adam', metrics=tf.metrics.BinaryAccuracy(threshold=0.0)) epochs = 10 history = model.fit( train_ds, validation_data=val_ds, epochs=epochs) loss, accuracy = model.evaluate(test_ds) print("Loss is : ", loss) print("Accuracy is : ", accuracy)
コードクレジット − https://www.tensorflow.org/tutorials/keras/text_classification
出力
Epoch 1/10 625/625 [==============================] - 12s 19ms/step - loss: 0.6818 - binary_accuracy: 0.6130 - val_loss: 0.6135 - val_binary_accuracy: 0.7750 Epoch 2/10 625/625 [==============================] - 4s 7ms/step - loss: 0.5785 - binary_accuracy: 0.7853 - val_loss: 0.4971 - val_binary_accuracy: 0.8230 Epoch 3/10 625/625 [==============================] - 4s 7ms/step - loss: 0.4651 - binary_accuracy: 0.8372 - val_loss: 0.4193 - val_binary_accuracy: 0.8470 Epoch 4/10 625/625 [==============================] - 4s 7ms/step - loss: 0.3901 - binary_accuracy: 0.8635 - val_loss: 0.3732 - val_binary_accuracy: 0.8612 Epoch 5/10 625/625 [==============================] - 4s 7ms/step - loss: 0.3435 - binary_accuracy: 0.8771 - val_loss: 0.3444 - val_binary_accuracy: 0.8688 Epoch 6/10 625/625 [==============================] - 4s 7ms/step - loss: 0.3106 - binary_accuracy: 0.8877 - val_loss: 0.3255 - val_binary_accuracy: 0.8730 Epoch 7/10 625/625 [==============================] - 5s 7ms/step - loss: 0.2855 - binary_accuracy: 0.8970 - val_loss: 0.3119 - val_binary_accuracy: 0.8732 Epoch 8/10 625/625 [==============================] - 5s 7ms/step - loss: 0.2652 - binary_accuracy: 0.9048 - val_loss: 0.3027 - val_binary_accuracy: 0.8772 Epoch 9/10 625/625 [==============================] - 5s 7ms/step - loss: 0.2481 - binary_accuracy: 0.9125 - val_loss: 0.2959 - val_binary_accuracy: 0.8782 Epoch 10/10 625/625 [==============================] - 5s 7ms/step - loss: 0.2328 - binary_accuracy: 0.9161 - val_loss: 0.2913 - val_binary_accuracy: 0.8792 782/782 [==============================] - 10s 12ms/step - loss: 0.3099 - binary_accuracy: 0.8741 Loss is : 0.3099007308483124 Accuracy is : 0.8741199970245361>
説明
-
モデルが構築されると、「コンパイル」機能を使用してコンパイルされます。
-
モデルをトレーニングするために定義されたステップ数は、ここでは10です。
-
「適合」関数は、構築されたモデルにデータを適合させるために使用されます。
-
「評価」関数は、テストデータセットのモデルの損失と精度を計算するために使用されます。
-
損失と精度の値がコンソールに表示されます。
-
Pythonを使用して復元されたモデルを評価するためにKerasをどのように使用できますか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます- pip install tensorflow Kerasは、プロジェクトONEIROS(オープンエンドの神経電子インテリジェントロボットオペレーティングシステム)の研究の一
-
Tensorflowを使用してMNISTデータセットのモデルを定義するにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。フレームワークは、ディープニューラルネットワークの操作をサポートします。 「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます- pip install tensorfl