Python
 Computer >> コンピューター >  >> プログラミング >> Python

正規化後、Tensorflowを使用してモデルをトレーニングおよび構築するにはどうすればよいですか?


アワビデータに関するモデルのトレーニングと構築は、それぞれ「コンパイル」メソッドと「フィット」メソッドを使用して実行できます。 「fit」メソッドは、エポック数もパラメーターとして受け取ります。

続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか?

アワビの測定値のセットを含むアワビデータセットを使用します。アワビは海のカタツムリの一種です。目標は、他の測定値に基づいて年齢を予測することです。

以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。

print("The model is being compiled")
norm_abalone_model.compile(loss = tf.losses.MeanSquaredError(),optimizer = tf.optimizers.Adam())
print("The model is being fit to the data")
norm_abalone_model.fit(abalone_features, abalone_labels, epochs=8)

コードクレジット:https://www.tensorflow.org/tutorials/load_data/csv

出力

The model is being compiled
The model is being fit to the data
Epoch 1/8
104/104 [==============================] - 0s 989us/step - loss: 98.3651
Epoch 2/8
104/104 [==============================] - 0s 945us/step - loss: 65.4568
Epoch 3/8
104/104 [==============================] - 0s 922us/step - loss: 21.7297
Epoch 4/8
104/104 [==============================] - 0s 912us/step - loss: 6.3429
Epoch 5/8
104/104 [==============================] - 0s 988us/step - loss: 5.0949
Epoch 6/8
104/104 [==============================] - 0s 958us/step - loss: 4.9868
Epoch 7/8
104/104 [==============================] - 0s 1ms/step - loss: 4.8982
Epoch 8/8
104/104 [==============================] - 0s 1ms/step - loss: 4.7936
<tensorflow.python.keras.callbacks.History at 0x7fda8213c898>

説明

  • 正規化レイヤーが構築されると、モデルはトレーニングデータを使用してトレーニングされます。
  • トレーニングが完了すると、「Model.fit」メソッドを使用して機能とラベルがデータに渡されます。

  1. Tensorflowと事前トレーニング済みモデルを使用して、Pythonを使用してデータを視覚化するにはどうすればよいですか?

    Tensorflowと事前トレーニング済みモデルを使用して、「matplotlib」ライブラリを使用してデータを視覚化できます。 「plot」メソッドは、コンソールにデータをプロットするために使用されます。 続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか? 少なくとも1つの層を含むニューラルネットワークは、畳み込み層と呼ばれます。畳み込みニューラルネットワークを使用して、学習モデルを構築できます。 事前に訓練されたネットワークからの転移学習の助けを借りて、猫と犬の画像を分類する方法を理解します。画

  2. Tensorflowを使用してPythonを使用してモデルをトレーニングするにはどうすればよいですか?

    モデルは、Tensorflowの「train」メソッドを使用してトレーニングできます。この方法では、エポック(モデルに合うようにデータをトレーニングする必要がある回数)とトレーニングデータが指定されます。 続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか? Google Colaboratoryを使用して、以下のコードを実行しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット