TensorflowをEstimatorで使用して、トレーニング済みモデルから予測を行うにはどうすればよいですか?
TensorflowをEstimatorで使用すると、「classifier」メソッドに存在する「predict」メソッドを使用して新しいデータの出力を予測できます。
続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか?
Keras Sequential APIを使用します。これは、すべてのレイヤーに1つの入力テンソルと1つの出力テンソルがあるプレーンスタックのレイヤーを操作するために使用されるシーケンシャルモデルの構築に役立ちます。
少なくとも1つの層を含むニューラルネットワークは、畳み込み層と呼ばれます。畳み込みニューラルネットワークを使用して、学習モデルを構築できます。
TensorFlow Textには、TensorFlow2.0で使用できるテキスト関連のクラスとオペレーションのコレクションが含まれています。 TensorFlow Textを使用して、シーケンスモデリングを前処理できます。
以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。
Estimatorは、TensorFlowによる完全なモデルの高レベルの表現です。簡単なスケーリングと非同期トレーニング用に設計されています。
モデルは、アイリスデータセットを使用してトレーニングされます。 4つの機能と1つのラベルがあります。
- がく片の長さ
- がく片の幅
- 花びらの長さ
- 花びらの幅
例
print(“Generating predictions from model”) expected = ['Setosa', 'Versicolor', 'Virginica'] predict_x = { 'SepalLength': [5.1, 5.9, 6.9], 'SepalWidth': [3.3, 3.0, 3.1], 'PetalLength': [1.7, 4.2, 5.4], 'PetalWidth': [0.5, 1.5, 2.1], } print(“Defining input function for prediction”) print(“It converts inputs to dataset without labels”) def input_fn(features, batch_size=256): return tf.data.Dataset.from_tensor_slices(dict(features)).batch(batch_size) predictions = classifier.predict( input_fn=lambda: input_fn(predict_x))
コードクレジット-https://www.tensorflow.org/tutorials/estimator/premade#first_things_first
出力
Generating predictions from model Defining input function for prediction It converts inputs to dataset without labels
説明
- トレーニングされたモデルは良い結果を生み出します。
- これは、特定のラベルのない測定値に基づいて、アイリスの花の種を予測するために使用できます。
- 予測は、単一の関数呼び出しを使用して行われます。
-
Tensorflowを使用してMNISTデータセットのモデルを定義するにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。フレームワークは、ディープニューラルネットワークの操作をサポートします。 「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます- pip install tensorfl
-
トレーニングされたモデルを使用してPythonで別の画像を予測できるように、TensorflowをFashion MNISTデータセットでどのように使用できますか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。フレームワークは、ディープニューラルネットワークの操作をサポートします。 「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-