公差スタックアップ
アセンブリ公差スタックアップ分析とは何ですか?
要するに、アセンブリ公差スタックアップ分析は、アセンブリ全体の公差値、またはすべてのコンポーネントの公差値を認識している場合のアセンブリの特定のギャップとして定義されます。
アセンブリトレランスチェーンスタックアップ分析は、さまざまな方法で実行できます。最も単純な手順は最悪の場合の方法と呼ばれ、ここで説明します。
組み立て公差スタックアップの最悪の場合の方法についての議論
以下のような4枚の厚いシートのアセンブリがあるとします-
上の図は、4枚のシートの厚さと公差を示しています。寸法「X」を計算する必要があります "とその許容値は以下のように進行します-
以下のように、各シートの仕様下限(LSL)サイズを計算します-
For SHEET-1: LSL= 25-0.4 = 24.6 For SHEET-2: LSL= 12-0.3 = 11.7 For SHEET-3: LSL= 12-0.3 = 11.7 For SHEET-4: LSL= 12-0.5 = 11.5
すべてのシートのLSL厚さの値を加算すると、アセンブリ全体のLSL厚さが次のように取得されます
。TL =24.6 +11.7 + 11.7 + 11.5 =59.5
各シートの仕様上限(USL)サイズは以下のように計算します-
For SHEET-1: USL= 25+0.4 = 25.4 For SHEET-2: USL= 12+0.3 = 12.3 For SHEET-3: USL= 12+0.3 = 12.3 For SHEET-4: USL= 12+0.5 = 12.5
すべてのシートのUSL厚さの値を追加すると、アセンブリ全体のUSLが次のように取得されます-
TU =25.4 + 12.3 + 12.3 + 12.5 =62.5
アセンブリ全体の許容誤差は、次のように取得できます-
~+mn~ (TU – TL) / 2 = ~+mn~ (62.5-59.5)/2 = ~+mn~ 1.5
以下のように、アセンブリ全体の公称厚さ値を取得するために、すべてのシートの公称厚さ寸法が追加されます-
TN =25 + 12 + 12 + 12 =61
-
トポロジカルソート
有向非巡回グラフのトポロジカルソートは、頂点の線形順序付けです。有向グラフのすべてのエッジU-Vについて、頂点uは順序付けで頂点vの前に来ます。 ソース頂点はデスティネーション頂点の後に来ることがわかっているので、スタックを使用して前の要素を格納する必要があります。すべてのノードが完成したら、スタックからノードを表示するだけです。 入力と出力 Input: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 Output: Nodes after topological sorted orde
-
C ++ STL(3.5)でスタック
C ++ STLでは、スタックはLIFO構造として実装されるコンテナーとして使用されます。 LIFOは後入れ先出しを意味します。 Stackは、本が上下に並べられた本の山と見なすことができ、最後に挿入された本が最初に削除されるため、LIFO構造と呼ばれます。 スタックに関連付けられている操作は- Top() -この関数は、スタックの最上位要素への参照を返します。 構文 --name_of_stack.top() パラメータ -パラメータなし 戻り値 -スタックコンテナの最上位要素への参照 Push() -この関数は、要素をスタックコンテナに挿入するために使用されま