C++での凸包単調チェーンアルゴリズム
このチュートリアルでは、特定の点のセットの凸包を見つけるプログラムについて説明します。
凸包は、図形の内側の境界上に指定されたすべての点を含む最小の多角形の凸包です。
例
#include <bits/stdc++.h> #define llu long long int using namespace std; //structure for the given point struct Point { llu x, y; bool operator<(Point p){ return x < p.x || (x == p.x && y < p.y); } }; //calculating the cross product of self made vectors llu calc_crossproduct(Point O, Point A, Point B){ return (A.x - O.x) * (B.y - O.y) - (A.y - O.y) * (B.x - O.x); } //calculating the points on boundary vector<Point> convex_hull(vector<Point> A){ int n = A.size(), k = 0; if (n <= 3) return A; vector<Point> ans(2 * n); //sorting points lexicographically sort(A.begin(), A.end()); for (int i = 0; i < n; ++i) { while (k >= 2 && calc_crossproduct(ans[k - 2], ans[k - 1], A[i]) <= 0) k--; ans[k++] = A[i]; } //building upper hull for (size_t i = n - 1, t = k + 1; i > 0; --i) { while (k >= t && calc_crossproduct(ans[k - 2], ans[k - 1], A[i - 1]) <= 0) k--; ans[k++] = A[i - 1]; } //resizing the given array ans.resize(k - 1); return ans; } int main(){ vector<Point> points; points.push_back({ 0, 3 }); points.push_back({ 2, 2 }); points.push_back({ 1, 1 }); points.push_back({ 2, 1 }); points.push_back({ 3, 0 }); points.push_back({ 0, 0 }); points.push_back({ 3, 3 }); vector<Point> ans = convex_hull(points); for (int i = 0; i < ans.size(); i++) cout << "(" << ans[i].x << ", " << ans[i].y << ")" << endl; return 0; }
出力
(0, 0) (3, 0) (3, 3) (0, 3)
-
C /C++でのバークレーのアルゴリズム
バークレーのアルゴリズムは、分散システムのクロック同期に使用されるアルゴリズムです。このアルゴリズムは、分散ネットワークの一部またはすべてのシステムにこれらの問題のいずれかがある場合に使用されます- A.マシンには正確なタイムソースがありません。 B.ネットワークまたはマシンにUTCサーバーがありません。 分散システム 物理的に分離されているが、ネットワークを使用して相互にリンクされている複数のノードが含まれています。 バークレーのアルゴリズム このアルゴリズムでは、システムはノードをマスター/リーダーノードとして選択します。これは、サーバーのプールノードから実行され
-
C ++のベルマンフォードアルゴリズム?
ベルマンフォードアルゴリズムは、開始頂点として扱われる頂点から計算された頂点の最短経路を見つけるために使用される動的計画法アルゴリズムです。このアルゴリズムは反復法に従い、最短パスを継続的に見つけようとします。重み付きグラフのベルマンフォードアルゴリズム。 このアルゴリズムは、1955年にAlphonsoshimbelによって提案されました。アルゴリズムにはRichardBellmanとLesterFordによる改訂があります。 1956年と1958年に、このアルゴリズムのためにベルマンフォードアルゴリズムと名付けられました。 。このアルゴリズムは、1957年にEward F. Mooreに