C ++
 Computer >> コンピューター >  >> プログラミング >> C ++

C++の特定の配列のすべてのウィンドウサイズの最小値の最大値を見つけます


この問題では、サイズnの配列arr[]が与えられます。私たちのタスクは、特定の配列のすべてのウィンドウサイズの最小値の最大値を見つけることです。

問題の説明 −1からnまで変化するウィンドウサイズの最小値の最大値を見つける必要があります。このために、指定されたウィンドウサイズのサブアレイを検討し、各サブアレイの最小要素を見つけてから、すべての最小値の最大値を見つけます。

問題を理解するために例を見てみましょう

入力

arr[] = {4, 1, 2, 4, 5, 1, 2, 4}

出力

5 4 2 1 1 1 1 1

説明

Window Size :
1 => windows { (4), (1), (2), (4), (5), (1), (2), (4) } => minimum = {4, 1, 2, 4, 5, 1, 2, 4} => maximum of minimums = 5
2 => windows { (4, 1), (1, 2), (2, 4), (4, 5), (5, 1), (1, 2), (2, 4) } => minimum = {1, 1, 2, 4, 1, 1, 2} => maximum of minimums = 4
3 => windows { (4, 1, 2), (1, 2, 4), (2, 4, 5), (4, 5, 1), (5, 1, 2), (1, 2, 4) } => minimum = {1, 1, 2, 1, 1, 1} => maximum of minimums = 2
4 => windows { (4, 1, 2, 4), (1, 2, 4, 5), (2, 4, 5, 1), (4, 5, 1, 2), (5, 1, 2, 4) }=> minimum = {1, 1, 1, 1, 1} => maximum of minimums = 1
5 => windows { (4, 1, 2, 4, 5), (1, 2, 4, 5, 1), (2, 4, 5, 1, 2), (4, 5, 1, 2, 4) } => minimum = {1, 1, 1, 1} => maximum of minimums = 1
6 => windows { (4, 1, 2, 4, 5, 1), (1, 2, 4, 5, 1, 2), (2, 4, 5, 1, 2, 4) } => minimum = {1, 1, 1} => maximum of minimums = 1
7 => windows { (4, 1, 2, 4, 5, 1, 2), (1, 2, 4, 5, 1, 2, 4) } => minimum = {1, 1} => maximum of minimums = 1
7 => windows { (4, 1, 2, 4, 5, 1, 2, 4) } => minimum = {1} => maximum of
minimums = 1

ソリューションアプローチ

この問題の簡単な解決策は、サイズ1からnのすべてのウィンドウを作成することです。次に、指定されたサイズのウィンドウごとに、指定されたサイズのすべてのサブ配列を検索します。配列については、各サブ配列の最小値を見つけて、すべての最小値の最大値を返します。

各ウィンドウサイズの反復の最後に、最小値のすべての最大値をscalaで出力します

ソリューションの動作を説明するプログラム

#include <iostream>
using namespace std;
void printMaxMinWindowK(int arr[], int n, int k) {
   int maxMin = -1;
   int minEle = -1;
   for (int i = 0; i <= n-k; i++) {
      minEle = arr[i];
      for (int j = 1; j < k; j++) {
         if (arr[i+j] < minEle)
            minEle = arr[i+j];
      }
      if (minEle > maxMin)
         maxMin = minEle;
   }
   cout<<maxMin<<endl;
}
int main() {
   int arr[] = {4, 1, 2, 4, 5, 1, 2, 4};
   int n = sizeof(arr)/sizeof(arr[0]);
   for(int i = 1; i < n; i++){
      cout<<"Window Size :"<<i<<", maximum of minimum : ";
      printMaxMinWindowK(arr, n, i);
   }
   return 0;
}

出力

Window Size :1, maximum of minimum : 70
Window Size :2, maximum of minimum : 30
Window Size :3, maximum of minimum : 20
Window Size :4, maximum of minimum : 10
Window Size :5, maximum of minimum : 10
Window Size :6, maximum of minimum : 10

代替ソリューション

この問題の簡単な解決策は、追加のメモリスペースを使用して、補助アレイを作成することです。配列を使用して、現在の要素の次に小さい要素を格納します。そしてもう1つは、前の最小要素を格納します。これらの配列を使用して、インデックスiの配列要素の要素を見つけます。要素arr[i]は、長さが「right [i] --left[i]+1」のウィンドウの最小値です。これを使用して、指定されたウィンドウの最小値の最大値を見つけます。

ソリューションの動作を説明するプログラム

#include <iostream>
#include<stack>
using namespace std;
void printMaxMinWindow(int arr[], int n) {
   stack<int> s;
   int prev[n+1];
   int next[n+1];
   for (int i=0; i<n; i++) {
      prev[i] = -1;
      next[i] = n;
   }
   for (int i=0; i<n; i++) {
      while (!s.empty() && arr[s.top()] >= arr[i])
         s.pop();
         if (!s.empty())
            prev[i] = s.top();
            s.push(i);
   }
   while (!s.empty())
      s.pop();
      for (int i = n-1 ; i>=0 ; i-- ) {
         while (!s.empty() && arr[s.top()] >= arr[i])
            s.pop();
            if(!s.empty())
               next[i] = s.top();
               s.push(i);
      }
      int maxOfMin[n+1];
      for (int i=0; i<=n; i++)
         maxOfMin[i] = 0;
         for (int i=0; i<n; i++) {
            int len = next[i] - prev[i] - 1;
            maxOfMin[len] = max(maxOfMin[len], arr[i]);
         }
         for (int i=n-1; i>=1; i--)
            maxOfMin[i] = max(maxOfMin[i], maxOfMin[i+1]);
         for (int i=1; i<=n; i++)
            cout<<"Window Size: "<<i<<", maximum of minimum : "<<maxOfMin[i]<<endl;
}
int main() {
   int arr[] = {4, 1, 2, 4, 5, 1, 2, 4};
   int n = sizeof(arr)/sizeof(arr[0]);
   printMaxMinWindow(arr, n);
   return 0;
}

出力

Window Size: 1, maximum of minimum : 5
Window Size: 2, maximum of minimum : 4
Window Size: 3, maximum of minimum : 2
Window Size: 4, maximum of minimum : 1
Window Size: 5, maximum of minimum : 1
Window Size: 6, maximum of minimum : 1
Window Size: 7, maximum of minimum : 1
Window Size: 8, maximum of minimum : 1

  1. C ++のバイナリツリーで最大(または最小)を見つける

    この問題では、二分木が与えられます。私たちのタスクは、バイナリツリーで最大(または最小)を見つけることです。 問題の説明: 二分木で最大値と最小値を持つ二分木のノードを見つける必要があります。 問題を理解するために例を見てみましょう。 入力: 出力: 最大=9、最小=1 ソリューションアプローチ 二分木の最大ノードを見つける必要があります。これを行うには、リーフノードに到達するまでポインタを移動し、ツリーの最大ノードを見つけます。 ソリューションの動作を説明するプログラム 例 #include <iostream> using namespace s

  2. C++の配列内のすべての要素に最も近い大きい値を検索します

    ここでは、配列内のすべての要素に最も近い大きい値を見つける方法を説明します。要素xに、それよりも大きい次の要素があり、配列にも存在する場合、それはその要素のより大きな値になります。要素が存在しない場合は、-1を返します。配列要素が[10、5、11、6、20、12]であるとすると、大きい方の要素は[11、6、12、10、-1、20]になります。 20は配列内でそれ以上の値を持たないため、-1を出力します。 これを解決するために、C++STLのセットを使用します。セットは、バイナリツリーアプローチを使用して実装されます。二分木では、常に順序の後続が次に大きい要素です。したがって、O(log n)