C ++を使用して、k ^ m、m>=0の形式の合計を持つサブ配列の数を見つけます
この記事では、C++でk^ m、m>=0の形式の合計を持つサブ配列の数を解決する方法についてすべて説明します。配列arr[]と整数Kが与えられた場合、合計がK ^ mの形式であるサブ配列の数を見つける必要があります。ここでmはゼロ以上です。または、次のようなサブ配列の数を見つける必要があると言えます。合計はKの非負の累乗に等しい。
Input: arr[] = { 2, 2, 2, 2 } K = 2
Output: 8
Sub-arrays with below indexes are valid:
[1, 1], [2, 2], [3, 3], [4, 4], [1, 2],
[2, 3], [3, 4], [1, 4]
Input: arr[] = { 3, -6, -3, 12 } K = -3
Output: 3 頭に浮かぶ主に2つのアプローチがあります-
ブルートフォース
このアプローチでは、すべてのサブアレイを調べて、それらがKの正の整数乗であるかどうかを確認します。はいの場合、カウントをインクリメントします。
例
#include <bits/stdc++.h>
#define MAX 1000000
using namespace std;
int main(){
int arr[] = {2, 2, 2, 2}; // given array
int k = 2; // given integer
int n = sizeof(arr) / sizeof(arr[0]); // the size of our array
int answer = 0; // counter variable
for(int i = 0; i < n; i++){
int sum = 0;
for(int j = i; j < n; j++){ // this will loop will make all the subarrays
sum += arr[j];
int b = 1;
while(b < MAX && sum > b) // k^m Max should be 10^6
b *= k;
if(b == sum) // if b == sum then increment count
answer++;
}
}
cout << answer << "\n";
} 出力
8
ただし、このプログラムの時間計算量は O(N * N * log(K))であるため、このアプローチはあまり適切ではありません。 ここで、Nは配列のサイズ、Kはユーザーが指定した整数です。
制約が大きい場合は処理に時間がかかりすぎるため、この複雑さはより高い制約に使用できるため、この複雑さは良くありません。そのため、プログラムをより高い制約に使用できるように、別のアプローチを試します。
効率的なアプローチ
このアプローチでは、プレフィックスの合計とマップを使用して処理を減らし、時間の複雑さを大幅に軽減します。
例
#include <bits/stdc++.h>
#define ll long long
#define MAX 1000000
using namespace std;
int main(){
int arr[] = {2, 2, 2, 2}; // The given array
int n = sizeof(arr) / sizeof(arr[0]); // size of our array
int k = 2; // given integer
ll prefix_sum[MAX];
prefix_sum[0] = 0;
partial_sum(arr, arr + n, prefix_sum + 1); // making prefix sum array
ll sum;
if (k == 1){
// we are going to check separately for 1
sum = 0;
map<ll, int> m;
for (int i = n; i >= 0; i--){
// If m[a+b] = c, then add c to the current sum.
if (m.find(prefix_sum[i] + 1) != m.end())
sum += m[prefix_sum[i] + 1];
// Increase count of prefix sum.
m[prefix_sum[i]]++;
}
cout << sum << "\n";
}
else if (k == -1){
// we are going to check separately for -1
sum = 0;
map<ll, int> m;
for (int i = n; i >= 0; i--){
// If m[a+b] = c, then add c to the current sum.
if (m.find(prefix_sum[i] + 1) != m.end())
sum += m[prefix_sum[i] + 1];
if (m.find(prefix_sum[i] - 1) != m.end())
sum += m[prefix_sum[i] - 1];
// Increase count of prefix sum.
m[prefix_sum[i]]++;
}
cout << sum << "\n";
}
else{
sum = 0;
ll b;
map<ll, int> m;
for (int i = n; i >= 0; i--){
b = 1;
while (b < MAX){ // we are not going to check for more than 10^6
// If m[a+b] = c, then add c to the current sum.
if (m.find(prefix_sum[i] + b) != m.end())
sum += m[prefix_sum[i] + b];
b *= k;
}
m[prefix_sum[i]]++;
}
cout << sum << "\n";
}
return 0;
} 出力
8
結論
問題を解決して、合計がk^mの形式のサブ配列の数を見つけます。ここでm>=0 in O(nlog(k)log(n)) 時間計算量。また、この問題のC ++プログラムと、この問題を解決するための完全なアプローチ(通常および効率的)についても学びました。同じプログラムを、C、java、python、その他の言語などの他の言語で作成できます。この記事がお役に立てば幸いです。
-
C++を使用して文字列の部分文字列の数を見つける
この記事では、特定の文字列に形成できるサブ文字列(空ではない)の数を見つけるためのアプローチについて学習します。 Input : string = “moon” Output : 10 Explanation: Substrings are ‘m’, ‘o’, ‘o’, ‘n’, ‘mo’, ‘oo’, ‘on’, ‘moo’, ‘oon’ and &
-
C++を使用して停止ステーションの数を見つける
ポイントXとYの間にn個の中間駅があります。2つの駅が隣接しないように、s駅に停車するように列車を配置できるさまざまな方法の数を数えます。そのため、この記事では、停車駅の数を見つけるためのあらゆる可能なアプローチについて説明します。問題を見ると、sの駅数で列車を止めることができる組み合わせを見つける必要があることがわかります。 問題を解決するためのアプローチ 中間駅が8つあり、3つの中間駅で電車を止める方法を見つける必要がある例を見てみましょう。 n = 8, s = 3 (n-s)、つまり電車が止まらない駅が5つ残っています 電車が止まらないA、B、C、D、Eの5つの駅があります