Pythonでの顧客離れの予測
すべてのビジネスは顧客の忠誠心に依存しています。顧客からのリピートビジネスは、ビジネスの収益性の基礎の1つです。したがって、顧客が事業を辞める理由を知ることが重要です。顧客が離れることは、顧客離れとして知られています。過去の傾向を見ることで、顧客離れに影響を与える要因と、特定の顧客がビジネスから離れるかどうかを予測する方法を判断できます。この記事では、MLアルゴリズムを使用して、顧客離れの過去の傾向を調査し、どの顧客が離れる可能性が高いかを判断します。
データの準備
例として、この記事のテレコム顧客チャーンを検討します。ソースデータはkaggelで入手できます。データをダウンロードするためのURLは、以下のプログラムに記載されています。 Pandasライブラリを使用してcsvファイルをPythonプログラムにロードし、サンプル行のいくつかを確認します。
例
import pandas as pd #Loading the Telco-Customer-Churn.csv dataset #https://www.kaggle.com/blastchar/telco-customer-churn datainput = pd.read_csv('E:\\Telecom_customers.csv') print("Given input data :\n",datainput)
出力
上記のコードを実行すると、次の結果が得られます-
Given input data : customerID gender SeniorCitizen ... MonthlyCharges TotalCharges Churn 0 7590-VHVEG Female 0 ... 29.85 29.85 No 1 5575-GNVDE Male 0 ... 56.95 1889.5 No 2 3668-QPYBK Male 0 ... 53.85 108.15 Yes 3 7795-CFOCW Male 0 ... 42.30 1840.75 No 4 9237-HQITU Female 0 ... 70.70 151.65 Yes ... ... ... ... ... ... ... ... 7038 6840-RESVB Male 0 ... 84.80 1990.5 No 7039 2234-XADUH Female 0 ... 103.20 7362.9 No 7040 4801-JZAZL Female 0 ... 29.60 346.45 No 7041 8361-LTMKD Male 1 ... 74.40 306.6 Yes 7042 3186-AJIEK Male 0 ... 105.65 6844.5 No [7043 rows x 21 columns]
既存のパターンを調査する
次に、データセットを調べて、チェーンが発生するときの既存のパターンを見つけます。また、条件に影響を与えないデータフレンドからいくつかの列を削除します。たとえば、顧客ID列は、顧客が離れるかどうかに影響を与えないため、dropallpopメソッドを使用してそのような列を削除します。次に、特定のデータセットの確率のパーセンテージを示すグラフをプロットします。
例2
import pandas as pd import matplotlib.pyplot as plt from matplotlib import rcParams #Loading the Telco-Customer-Churn.csv dataset #https://www.kaggle.com/blastchar/telco-customer-churn datainput = pd.read_csv('E:\\Telecom_customers.csv') print("Given input data :\n",datainput) #Dropping columns datainput.drop(['customerID'], axis=1, inplace=True) datainput.pop('TotalCharges') datainput['OnlineBackup'].unique() data = datainput['Churn'].value_counts(sort = True) chroma = ["#BDFCC9","#FFDEAD"] rcParams['figure.figsize'] = 9,9 explode = [0.2,0.2] plt.pie(data, explode=explode, colors=chroma, autopct='%1.1f%%', shadow=True, startangle=180,) plt.title('Percentage of Churn in the given Data') plt.show()
出力
上記のコードを実行すると、次の結果が得られます-
データ前処理
MLアルゴリズムでデータを使用できるようにするために、すべてのフィールドにラベルを付けます。また、テキスト値を数値フラグに変換します。たとえば、性別列の値は、男性と女性ではなく、0と1に変更されます。これは、チャーン値に対するこれらのフィールドの影響を評価する計算およびアルゴリズムでこれらのフィールドを使用するのに役立ちます。 sklearnのLabelEncoderメソッドを使用します。
例3
import pandas as pd from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder() datainput['gender'] = label_encoder.fit_transform(datainput['gender']) datainput['Partner'] = label_encoder.fit_transform(datainput['Partner']) datainput['Dependents'] = label_encoder.fit_transform(datainput['Dependents']) datainput['PhoneService'] = label_encoder.fit_transform(datainput['PhoneService']) datainput['MultipleLines'] = label_encoder.fit_transform(datainput['MultipleLines']) datainput['InternetService'] = label_encoder.fit_transform(datainput['InternetService']) datainput['OnlineSecurity'] = label_encoder.fit_transform(datainput['OnlineSecurity']) datainput['OnlineBackup'] = label_encoder.fit_transform(datainput['OnlineBackup']) datainput['DeviceProtection'] = label_encoder.fit_transform(datainput['DeviceProtection']) datainput['TechSupport'] = label_encoder.fit_transform(datainput['TechSupport']) datainput['StreamingTV'] = label_encoder.fit_transform(datainput['StreamingTV']) datainput['StreamingMovies'] = label_encoder.fit_transform(datainput['StreamingMovies']) datainput['Contract'] = label_encoder.fit_transform(datainput['Contract']) datainput['PaperlessBilling'] = label_encoder.fit_transform(datainput['PaperlessBilling']) datainput['PaymentMethod'] = label_encoder.fit_transform(datainput['PaymentMethod']) datainput['Churn'] = label_encoder.fit_transform(datainput['Churn']) print("input data after label encoder :\n",datainput) #separating features(X) and label(y) datainput["Churn"] = datainput["Churn"].astype(int) y = datainput["Churn"].values X = datainput.drop(labels = ["Churn"],axis = 1) print("\nseparated X and y :") print("y -",y) print("X -",X)
出力
上記のコードを実行すると、次の結果が得られます-
input data after label encoder customerID gender SeniorCitizen ... MonthlyCharges TotalCharges Churn 0 7590-VHVEG 0 0 ... 29.85 29.85 0 1 5575-GNVDE 1 0 ... 56.95 1889.5 0 2 3668-QPYBK 1 0 ... 53.85 108.15 1 3 7795-CFOCW 1 0 ... 42.30 1840.75 0 4 9237-HQITU 0 0 ... 70.70 151.65 1 ... ... ... ... ... ... ... ... 7038 6840-RESVB 1 0 ... 84.80 1990.5 0 7039 2234-XADUH 0 0 ... 103.20 7362.9 0 7040 4801-JZAZL 0 0 ... 29.60 346.45 0 7041 8361-LTMKD 1 1 ... 74.40 306.6 1 7042 3186-AJIEK 1 0 ... 105.65 6844.5 0 [7043 rows x 21 columns] separated X and y : y - [0 0 1 ... 0 1 0] X - customerID gender ... MonthlyCharges TotalCharges 0 7590-VHVEG 0 ... 29.85 29.85 1 5575-GNVDE 1 ... 56.95 1889.5 2 3668-QPYBK 1 ... 53.85 108.15 3 7795-CFOCW 1 ... 42.30 1840.75 4 9237-HQITU 0 ... 70.70 151.65 ... ... ... ... ... ... 7038 6840-RESVB 1 ... 84.80 1990.5 7039 2234-XADUH 0 ... 103.20 7362.9 7040 4801-JZAZL 0 ... 29.60 346.45 7041 8361-LTMKD 1 ... 74.40 306.6 7042 3186-AJIEK 1 ... 105.65 6844.5 [7043 rows x 20 columns]
データのトレーニングとテスト
次に、データセットを2つの部分に分割します。 1つはトレーニング用で、もう1つはテスト用です。 test_sizeパラメーターは、データセットの何パーセントがテストにのみ使用されるかを決定するために使用されます。この演習は、作成しているモデルに対する自信を得るのに役立ちます。次に、ロジスティック回帰アルゴリズムを適用して、予測値を見つけます。
例
import pandas as pd import warnings warnings.filterwarnings("ignore") from sklearn.linear_model import LogisticRegression #Loading the Telco-Customer-Churn.csv dataset with pandas datainput = pd.read_csv('E:\\Telecom_customers.csv') datainput.drop(['customerID'], axis=1, inplace=True) datainput.pop('TotalCharges') datainput['OnlineBackup'].unique() #LabelEncoder() from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder() datainput['gender'] = label_encoder.fit_transform(datainput['gender']) datainput['Partner'] = label_encoder.fit_transform(datainput['Partner']) datainput['Dependents'] = label_encoder.fit_transform(datainput['Dependents']) datainput['PhoneService'] = label_encoder.fit_transform(datainput['PhoneService']) datainput['MultipleLines'] = label_encoder.fit_transform(datainput['MultipleLines']) datainput['InternetService'] = label_encoder.fit_transform(datainput['InternetService']) datainput['OnlineSecurity'] = label_encoder.fit_transform(datainput['OnlineSecurity']) datainput['OnlineBackup'] = label_encoder.fit_transform(datainput['OnlineBackup']) datainput['DeviceProtection'] = label_encoder.fit_transform(datainput['DeviceProtection']) datainput['TechSupport'] = label_encoder.fit_transform(datainput['TechSupport']) datainput['StreamingTV'] = label_encoder.fit_transform(datainput['StreamingTV']) datainput['StreamingMovies'] = label_encoder.fit_transform(datainput['StreamingMovies']) datainput['Contract'] = label_encoder.fit_transform(datainput['Contract']) datainput['PaperlessBilling'] = label_encoder.fit_transform(datainput['PaperlessBilling']) datainput['PaymentMethod'] = label_encoder.fit_transform(datainput['PaymentMethod']) datainput['Churn'] = label_encoder.fit_transform(datainput['Churn']) #print("input data after label encoder :\n",datainput) #separating features(X) and label(y) datainput["Churn"] = datainput["Churn"].astype(int) Y = datainput["Churn"].values X = datainput.drop(labels = ["Churn"],axis = 1) #train_test_split method from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) #LogisticRegression classifier=LogisticRegression() classifier.fit(X_train,Y_train) Y_pred=classifier.predict(X_test) print("\npredicted values :\n",Y_pred)
出力
上記のコードを実行すると、次の結果が得られます-
predicted values : [0 0 1 ... 0 1 0]
評価パラメータの検索
上記のステップの精度レベルが許容範囲内になったら、さまざまなパラメーターを見つけてモデルをさらに評価します。このモデルがどの程度正確に動作しているかを判断するためのパラメーターとして、精度と混同行列を使用します。精度値のパーセンテージが高いほど、モデルがより適切であることを示します。同様に、混同行列は、真陽性、真陰性、偽陽性、および偽陰性の行列を示します。偽の値と比較して真の値の割合が高いことは、モデルが優れていることを示しています。
例
import pandas as pd import warnings warnings.filterwarnings("ignore") from sklearn.linear_model import LogisticRegression from sklearn import metrics from sklearn.metrics import confusion_matrix #Loading the Telco-Customer-Churn.csv dataset with pandas datainput = pd.read_csv('E:\\Telecom_customers.csv') datainput.drop(['customerID'], axis=1, inplace=True) datainput.pop('TotalCharges') datainput['OnlineBackup'].unique() #LabelEncoder() from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder() datainput['gender'] = label_encoder.fit_transform(datainput['gender']) datainput['Partner'] = label_encoder.fit_transform(datainput['Partner']) datainput['Dependents'] = label_encoder.fit_transform(datainput['Dependents']) datainput['PhoneService'] = label_encoder.fit_transform(datainput['PhoneService']) datainput['MultipleLines'] = label_encoder.fit_transform(datainput['MultipleLines']) datainput['InternetService'] = label_encoder.fit_transform(datainput['InternetService']) datainput['OnlineSecurity'] = label_encoder.fit_transform(datainput['OnlineSecurity']) datainput['OnlineBackup'] = label_encoder.fit_transform(datainput['OnlineBackup']) datainput['DeviceProtection'] = label_encoder.fit_transform(datainput['DeviceProtection']) datainput['TechSupport'] = label_encoder.fit_transform(datainput['TechSupport']) datainput['StreamingTV'] = label_encoder.fit_transform(datainput['StreamingTV']) datainput['StreamingMovies'] = label_encoder.fit_transform(datainput['StreamingMovies']) datainput['Contract'] = label_encoder.fit_transform(datainput['Contract']) datainput['PaperlessBilling'] = label_encoder.fit_transform(datainput['PaperlessBilling']) datainput['PaymentMethod'] = label_encoder.fit_transform(datainput['PaymentMethod']) datainput['Churn'] = label_encoder.fit_transform(datainput['Churn']) #print("input data after label encoder :\n",datainput) #separating features(X) and label(y) datainput["Churn"] = datainput["Churn"].astype(int) Y = datainput["Churn"].values X = datainput.drop(labels = ["Churn"],axis = 1) #train_test_split method from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) #LogisticRegression classifier=LogisticRegression() classifier.fit(X_train,Y_train) Y_pred=classifier.predict(X_test) #Accuracy LR = metrics.accuracy_score(Y_test, Y_pred) * 100 print("\nThe accuracy score using the LR is -> ",LR) #confusion matrix cm=confusion_matrix(Y_test,Y_pred) print("\nconfusion matrix : \n",cm)
出力
上記のコードを実行すると、次の結果が得られます-
The accuracy score using the LR is -> 80.8374733853797 confusion matrix : [[928 109] [161 211]]
変数の重み
次に、各フィールドまたは変数がチャーン値にどのように影響するかを判断します。これは、チャーンに大きな影響を与える特定の変数をターゲットにして、顧客のチャーンを防ぐためにそれらの変数を処理しようとするのに役立ちます。このために、分類子の係数をゼロに設定し、各変数の重みを取得します。
>例
import pandas as pd import warnings warnings.filterwarnings("ignore") from sklearn.linear_model import LogisticRegression #Loading the dataset with pandas datainput = pd.read_csv('E:\\Telecom_customers.csv') datainput.drop(['customerID'], axis=1, inplace=True) datainput.pop('TotalCharges') datainput['OnlineBackup'].unique() #LabelEncoder() from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder() datainput['gender'] = label_encoder.fit_transform(datainput['gender']) datainput['Partner'] = label_encoder.fit_transform(datainput['Partner']) datainput['Dependents'] = label_encoder.fit_transform(datainput['Dependents']) datainput['PhoneService'] = label_encoder.fit_transform(datainput['PhoneService']) datainput['MultipleLines'] = label_encoder.fit_transform(datainput['MultipleLines']) datainput['InternetService'] = label_encoder.fit_transform(datainput['InternetService']) datainput['OnlineSecurity'] = label_encoder.fit_transform(datainput['OnlineSecurity']) datainput['OnlineBackup'] = label_encoder.fit_transform(datainput['OnlineBackup']) datainput['DeviceProtection'] = label_encoder.fit_transform(datainput['DeviceProtection']) datainput['TechSupport'] = label_encoder.fit_transform(datainput['TechSupport']) datainput['StreamingTV'] = label_encoder.fit_transform(datainput['StreamingTV']) datainput['StreamingMovies'] = label_encoder.fit_transform(datainput['StreamingMovies']) datainput['Contract'] = label_encoder.fit_transform(datainput['Contract']) datainput['PaperlessBilling'] = label_encoder.fit_transform(datainput['PaperlessBilling']) datainput['PaymentMethod'] = label_encoder.fit_transform(datainput['PaymentMethod']) datainput['Churn'] = label_encoder.fit_transform(datainput['Churn']) #print("input data after label encoder :\n",datainput) #separating features(X) and label(y) datainput["Churn"] = datainput["Churn"].astype(int) Y = datainput["Churn"].values X = datainput.drop(labels = ["Churn"],axis = 1) # #train_test_split method from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) # #LogisticRegression classifier=LogisticRegression() classifier.fit(X_train,Y_train) Y_pred=classifier.predict(X_test) #weights of all the variables wt = pd.Series(classifier.coef_[0], index=X.columns.values) print("\nweight of all the variables :") print(wt.sort_values(ascending=False))
出力
上記のコードを実行すると、次の結果が得られます-
weight of all the variables : PaperlessBilling 0.389379 SeniorCitizen 0.246504 InternetService 0.209283 Partner 0.067855 StreamingMovies 0.054309 MultipleLines 0.042330 PaymentMethod 0.039134 MonthlyCharges 0.027180 StreamingTV -0.008606 gender -0.029547 tenure -0.034668 DeviceProtection -0.052690 OnlineBackup -0.143625 Dependents -0.209667 OnlineSecurity -0.245952 TechSupport -0.254740 Contract -0.729557 PhoneService -0.950555 dtype: float64
-
Pythonでの統計的思考
統計は、mlとAIを学ぶための基本です。 Pythonはこれらのテクノロジーに最適な言語であるため、統計分析を組み込んだPythonプログラムの作成方法を説明します。この記事では、さまざまなPythonモジュールを使用してグラフやチャートを作成する方法を説明します。このさまざまなグラフは、データをすばやく分析し、内部を導き出すのに役立ちます。 データの準備 さまざまなシードに関するデータを含むデータセットを取得します。このデータセットは、以下のプログラムに示されているリンクのkaggleで入手できます。さまざまなシードの特徴を比較するためのさまざまなタイプのチャートを作成するために使用される
-
Pythonで国勢調査データを分析する
国勢調査とは、特定の人口に関する情報を体系的に記録することです。キャプチャされたデータには、人口統計、経済、居住の詳細など、さまざまなカテゴリの情報が含まれます。これは、最終的に政府が現在のシナリオと将来の計画を理解するのに役立ちます。この記事では、Pythonを活用してインドの人口の人口調査データを分析する方法を説明します。さまざまな人口統計学的および経済的側面を見ていきます。次に、分析をグラフィカルに投影する電荷をプロットします。 kaggleから収集されたソース。ここにあります。 データの整理 以下のプログラムでは、最初に短いPythonプログラムを使用してデータを取得します。さらに分