Python
 Computer >> コンピューター >  >> プログラミング >> Python

Tensorflowを使用して、Pythonを使用してレイヤーインスタンスのコンストラクター引数を返すにはどうすればよいですか?


Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズムや深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。

Kerasは、プロジェクトONEIROS(オープンエンドの神経電子インテリジェントロボットオペレーティングシステム)の研究の一環として開発されました。 Kerasは、Pythonで記述されたディープラーニングAPIです。これは、機械学習の問題を解決するのに役立つ生産的なインターフェースを備えた高レベルのAPIです。

Tensorflowフレームワーク上で実行されます。迅速な実験を支援するために構築されました。機械学習ソリューションの開発とカプセル化に不可欠な、本質的な抽象化とビルディングブロックを提供します。

非常にスケーラブルで、クロスプラットフォーム機能が付属しています。これは、KerasをTPUまたはGPUのクラスターで実行できることを意味します。 Kerasモデルをエクスポートして、Webブラウザや携帯電話で実行することもできます。

KerasはすでにTensorflowパッケージに含まれています。以下のコード行を使用してアクセスできます。

import tensorflow
from tensorflow import keras

Keras機能APIは、シーケンシャルAPIを使用して作成されたモデルと比較してより柔軟なモデルを作成するのに役立ちます。機能APIは、非線形トポロジを持つモデルで動作し、レイヤーを共有し、複数の入力と出力で動作します。深層学習モデルは通常、複数のレイヤーを含む有向非巡回グラフ(DAG)です。機能APIは、レイヤーのグラフを作成するのに役立ちます。

Google Colaboratoryを使用して、以下のコードを実行しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 Colaboratoryは、JupyterNotebookの上に構築されています。以下は、Pythonを使用してレイヤーインスタンスのコンストラクター引数を返すコードスニペットです-

class CustomDense(layers.Layer):
   def __init__(self, units=32):
      super(CustomDense, self).__init__()
      self.units = units
   def build(self, input_shape):
      self.w = self.add_weight(
         shape=(input_shape[-1], self.units),
         initializer="random_normal",
         trainable=True,
      )
      self.b = self.add_weight(
         shape=(self.units,), initializer="random_normal", trainable=True
      )
   def call(self, inputs):
      return tf.matmul(inputs, self.w) + self.b
   def get_config(self):
      return {"units": self.units}
inputs = keras.Input((4,))
outputs = CustomDense(10)(inputs)

model = keras.Model(inputs, outputs)
print("The below function returns constructor arguments for the instance of the layer")
config = model.get_config()

new_model = keras.Model.from_config(config, custom_objects={"CustomDense": CustomDense})

コードクレジット-https://www.tensorflow.org/guide/keras/functional

出力

The below function returns constructor arguments for the instance of the layer

説明

  • モデルに重みを追加するために使用される「CustomDense」という名前のクラスが作成されます。

  • レイヤーのすべてのインスタンスのコンストラクター引数を返す「get_config」という名前の別の関数が定義されています。

  • モデルへの入力レイヤーが定義されます。

  • 次に、モデルが定義され、関数が呼び出されます。


  1. Tensorflowを使用してPythonを使用して2つの行列を乗算するにはどうすればよいですか?

    Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。フレームワークは、ディープニューラルネットワークの操作をサポートします。これは非常にスケーラブルであり、多くの一般的なデータセットが付属しています。 GPU計算を使用し、リソ

  2. Pythonを使用してモデルをプロットするためにKerasをどのように使用できますか?

    Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子イン