TensorFlowを使用してPythonでFashionMNISTの予測を検証するにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。
「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-
pip install tensorflow
「FashionMNIST」データセットには、さまざまな種類の衣類の画像が含まれています。 10の異なるカテゴリに属する7万以上の服のグレースケール画像が含まれています。これらの画像は低解像度(28 x 28ピクセル)です。
Google Colaboratoryを使用して、以下のコードを実行しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。
以下は、PythonでのFashionMNISTの予測を検証するためのコードスニペットです-
例
i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i], test_labels)
plt.show()
i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i], test_labels)
plt.show()
num_rows = 5
num_cols = 3
print("The test images, predicted labels and the true labels are plotted")
print("The correct predictions are in green and the incorrect predictions are in red")
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
plt.subplot(num_rows, 2*num_cols, 2*i+1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(num_rows, 2*num_cols, 2*i+2)
plot_value_array(i, predictions[i], test_labels)
plt.tight_layout()
plt.show() コードクレジット − https://www.tensorflow.org/tutorials/keras/classification
出力
説明
-
モデルがトレーニングされると、他の画像の予測に使用できます。
-
画像に対して予測が行われ、予測配列が表示されます。
-
正しく予測されたラベルは緑色で、誤って予測されたラベルは赤色で表示されます。
-
数値は、予測されたラベルのパーセンテージ値を示します。
-
これは、モデルが予測したラベルが画像の実際のラベルであることをモデルがどの程度正確に示唆しているかを示します。
-
TensorFlowを使用してPythonでFashionMNISTデータを前処理するにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。 「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます- pip install tensorflow Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりませ
-
「サブプロット」関数を使用して、Matplotlib Pythonで2つのグラフを作成するにはどうすればよいですか?
Matplotlibは、データの視覚化に使用される人気のあるPythonパッケージです。 データを視覚化することは、実際に数値を調べたり複雑な計算を実行したりすることなく、データで何が起こっているのかを理解するのに役立つため、重要なステップです。 定量的な洞察を聴衆に効果的に伝えるのに役立ちます。 Matplotlibは、データを使用して2次元プロットを作成するために使用されます。 Pythonアプリケーションにプロットを埋め込むのに役立つオブジェクト指向APIが付属しています。 Matplotlibは、IPythonシェル、Jupyterノートブック、SpyderIDEなどで使用できま